Title: A High Stellar Velocity Dispersion and ~100 Globular Clusters for the Ultra Diffuse Galaxy Dragonfly 44
Publication: 1606.06291
, v828,The title of this paper sounds like some standard astrophysics analyses; but, dig a little deeper and you’ll find – what I think – is an incredibly interesting, surprising and unexpected observation.
Last year, using the WM Keck Observatory and the Gemini North Telescope in Manuakea, Hawaii, the Dragonfly Telephoto Array observed the Coma cluster (a large cluster of galaxies in the constellation Coma – I’ve included a Hubble Image to the left). The team identified a population of large, very low surface brightness (ie: not a lot of stars), spheroidal galaxies around an Ultra Diffuse Galaxy (UDG) called Dragonfly 44 (shown below). They determined that Dragonfly 44 has so few stars that gravity could not hold it together – so some other matter had to be involved – namely DARK MATTER (my favorite kind of unknown matter).
The team used the DEIMOS instrument installed on Keck II to measure the velocities of stars for 33.5 hours over a period of six nights so they could determine the galaxy’s mass. Observations of Dragonfly 44’s rotational speed suggest that it has a mass of about one trillion solar masses, about the same as the Milky Way. However, the galaxy emits only 1% of the light emitted by the Milky Way. In other words, the Milky Way has more than a hundred times more stars than Dragonfly 44. I’ve also included the Mass-to-Light ratio plot vs. the dynamical mass. This illustrates how unique Dragonfly 44 is compared to other dark matter dominated galaxies like dwarf spheroidal galaxies.
What is particularly exciting is that we don’t understand how galaxies like this form.
Their research indicates that these UDGs could be failed galaxies, with the sizes, dark matter content, and globular cluster systems of much more luminous objects. But we’ll need to discover more to fully understand them.
Further reading (works by the same authors)
Forty-Seven Milky Way-Sized, Extremely Diffuse Galaxies in the Coma Cluster,arXiv: 1410.8141
Spectroscopic Confirmation of the Existence of Large, Diffuse Galaxies in the Coma Cluster: arXiv: 1504.03320
Latest posts by Regina Caputo (see all)
- Dragonfly 44: A potential Dark Matter Galaxy - September 7, 2016
- Dark matter of Pulsars?? cont… - August 4, 2016
- Dark matter or Pulsars? - July 6, 2016
Ya learn sontmhieg new everyday. It’s true I guess!