The XENON1T Excess : The Newest Craze in Particle Physics

Paper: Observation of Excess Electronic Recoil Events in XENON1T

Authors: XENON1T Collaboration

Recently the particle physics world has been abuzz with a new result from the XENON1T experiment who may have seen a revolutionary signal. XENON1T is one of the world’s most sensitive dark matter experiments. The experiment consists of a huge tank of Xenon placed deep underground in the Gran Sasso mine in Italy. It is a ‘direct-detection’ experiment, hunting for very rare signals of dark matter particles from space interacting with their detector. It was originally designed to look for WIMP’s, Weakly Interacting Massive Particles, who used to be everyone’s favorite candidate for dark matter. However, given recent null results by WIMP-hunting  direct-detection experiments, and collider experiments at the LHC, physicists have started to broaden their dark matter horizons. Experiments like XENON1T, who were designed to look for heavy WIMP’s colliding off of Xenon nuclei have realized that they can also be very sensitive to much lighter particles by looking for electron recoils. New particles that are much lighter than traditional WIMP’s would not leave much of an impact on large Xenon nuclei, but they can leave a signal in the detector if they instead scatter off of the electrons around those nuclei. These electron recoils can be identified by the ionization and scintillation signals they leave in the detector, allowing them to be distinguished from nuclear recoils.

In this recent result, the XENON1T collaboration searched for these electron recoils in the energy range of 1-200 keV with unprecedented sensitivity.  Their extraordinary sensitivity is due to its exquisite control over backgrounds and extremely low energy threshold for detection. Rather than just being impressed, what has gotten many physicists excited is that the latest data shows an excess of events above expected backgrounds in the 1-7 keV region. The statistical significance of the excess is 3.5 sigma, which in particle physics is enough to claim ‘evidence’ of an anomaly but short of the typical 5-sigma required to claim discovery.

The XENON1T data that has caused recent excitement. The ‘excess’ is the spike in the data (black points) above the background model (red line) in the 1-7 keV region. The significance of the excess is around 3.5 sigma.

So what might this excess mean? The first, and least fun answer, is nothing. 3.5 sigma is not enough evidence to claim discovery, and those well versed in particle physics history know that there have been numerous excesses with similar significances have faded away with more data. Still it is definitely an intriguing signal, and worthy of further investigation.

The pessimistic explanation is that it is due to some systematic effect or background not yet modeled by the XENON1T collaboration. Many have pointed out that one should be skeptical of signals that appear right at the edge of an experiments energy detection threshold. The so called ‘efficiency turn on’, the function that describes how well an experiment can reconstruct signals right at the edge of detection, can be difficult to model. However, there are good reasons to believe this is not the case here. First of all the events of interest are actually located in the flat part of their efficiency curve (note the background line is flat below the excess), and the excess rises above this flat background. So to explain this excess their efficiency would have to somehow be better at low energies than high energies, which seems very unlikely. Or there would have to be a very strange unaccounted for bias where some higher energy events were mis-reconstructed at lower energies. These explanations seem even more implausible given that the collaboration performed an electron reconstruction calibration using the radioactive decays of Radon-220 over exactly this energy range and were able to model the turn on and detection efficiency very well.

Results of a calibration done to radioactive decays of Radon-220. One can see that data in the efficiency turn on (right around 2 keV) is modeled quite well and no excesses are seen.

However the possibility of a novel Standard Model background is much more plausible. The XENON collaboration raises the possibility that the excess is due to a previously unobserved background from tritium β-decays. Tritium decays to Helium-3 and an electron and a neutrino with a half-life of around 12 years. The energy released in this decay is 18.6 keV, giving the electron having an average energy of a few keV. The expected energy spectrum of this decay matches the observed excess quite well. Additionally, the amount of contamination needed to explain the signal is exceedingly small. Around 100 parts-per-billion of H2 would lead to enough tritium to explain the signal, which translates to just 3 tritium atoms per kilogram of liquid Xenon. The collaboration tries their best to investigate this possibility, but they neither rule out or confirm such a small amount of tritium contamination. However, other similar contaminants, like diatomic oxygen have been confirmed to be below this level by 2 orders of magnitude, so it is not impossible that they were able to avoid this small amount of contamination.

So while many are placing their money on the tritium explanation, there is the exciting possibility remains that this is our first direct evidence of physics Beyond the Standard Model (BSM)! So if the signal really is a new particle or interaction what would it be? Currently it it is quite hard to pin down exactly based on the data. The analysis was specifically searching for two signals that would have shown up in exactly this energy range: axions produced in the sun, and neutrinos produced in the sun interacting with electrons via a large (BSM) magnetic moment. Both of these models provide good fits to the signal shape, with the axion explanation being slightly preferred. However since this result has been released, many have pointed out that these models would actually be in conflict with constraints from astrophysical measurements. In particular, the axion model they searched for would have given stars an additional way to release energy, causing them to cool at a faster rate than in the Standard Model. The strength of interaction between axions and electrons needed to explain the XENON1T excess is incompatible with the observed rates of stellar cooling. There are similar astrophysical constraints on neutrino magnetic moments that also make it unlikely.

This has left door open for theorists to try to come up with new explanations for these excess events, or think of clever ways to alter existing models to avoid these constraints. And theorists are certainly seizing this opportunity! There are new explanations appearing on the arXiv every day, with no sign of stopping. In the roughly 2 weeks since the XENON1T announced their result and this post is being written, there have already been 50 follow up papers! Many of these explanations involve various models of dark matter with some additional twist, such as being heated up in the sun or being boosted to a higher energy in some other way.

A collage of different models trying to explain the XENON1T excess (center). Each plot is from a separate paper released in the first week and a half following the original announcement. Source

So while theorists are currently having their fun with this, the only way we will figure out the true cause of this this anomaly is with more data. The good news is that the XENON collaboration is already preparing for the XENONnT experiment that will serve as a follow to XENON1T. XENONnT will feature a larger active volume of Xenon and a lower background level, allowing them to potentially confirm this anomaly at the 5-sigma level with only a few months of data. If  the excess persists, more data would also allow them to better determine the shape of the signal; allowing them to possibly distinguish between the tritium shape and a potential new physics explanation. If real, other liquid Xenon experiments like LUX and PandaX should also be able to independently confirm the signal in the near future. The next few years should be a very exciting time for these dark matter experiments so stay tuned!

Read More:

Quanta Magazine Article “Dark Matter Experiment Finds Unexplained Signal”

Previous ParticleBites Post on Axion Searches

Blog Post “Hail the XENON Excess”

Are You Magnetic?

It’s no secret that the face of particle physics lies in the collaboration of scientists all around the world – and for the first time a group of 170 physicists have come to a consensus on one of the most puzzling predictions of the Standard Model muon. The anomalous magnetic moment of the muon concerns the particle’s rotation, or precession, in the presence of a magnetic field. Recall that elementary particles, like the electron and muon, possess intrinsic angular momentum, called spin, and hence indeed behave like a little dipole “bar magnet” – consequently affected by an external magnetic field.

The “classical” version of such an effect comes straight from the Dirac equation, a quantum mechanical framework for relativistic spin-1/2 particles like the electron and muon. It is expressed in terms of the g-factor, where g=2 in the Dirac theory. However, more accurate predictions, to compare to with experiment, require more extended calculations in the framework of quantum field theory, with “loops” of virtual particles forming the quantum mechanical corrections. In such a case we of course find deviation from the classical value in what becomes the anomalous magnetic moment with

a = \frac{g-2}{2}

For the electron, the prediction coming from Quantum Electrodynamics (QED) is so accurate, it actually agrees with the experimental result up to 10 significant figures (side note: in fact, this is not the only thing that agrees very well with experiment from QED, see precision tests of QED).

Figure 1: a “one-loop” contribution to the magnetic dipole moment in the theory of Quantum Electrodynamics (QED)

The muon, however, isn’t so simple and actually gets rather messy. In the Standard Model it comes with three parts, QED, electroweak and hadronic contributions

a^{SM}_{\mu} = a^{QED}_{\mu}+a^{EW}_{\mu}+a^{hadron}_{\mu}

Up until now, the accuracy of these calculations have been the subject of a number of collaborations around the world. The largest source (in fact, almost all) of the uncertainty actually comes from the smaller contributions to the magnetic moment, the hadronic part. It is so difficult to estimate that it actually requires input from experimental sources and lattice QCD methods. This review constitutes the most comprehensive report of both the data-driven and lattice methods for hadronic contributions to the muon’s magnetic moment.

Their final result, a^{SM}_{\mu} = 116591810(43) \times 10^{-11} remains 3.7 standard deviations below the current experimental value, measured at Fermilab in Brookhaven National Laboratory. However the most exciting part about all this is the fact that Fermilab is on the brink of releasing a new measurement, with the uncertainties reduced by almost a factor of four compared to the last. And if they don’t agree then? We could be that much closer to confirmation of some new physics in one of the most interesting of places!

References and Further Reading:

1. The new internationally-collaborated calculation: The anomalous magnetic moment of the muon in the Standard model, https://arxiv.org/abs/2006.04822

2. https://news.fnal.gov/2020/06/physicists-publish-worldwide-consensus-of-muon-magnetic-moment-calculation/

A Charming Story

This post is intended to give an overview of the motivation, purpose, and discovery of the charm quark.

The Problem

The conventional 3-quark (up, down, and strange) models of the weak interaction are inconsistent with weak selection rules. In particular, strangeness-changing (\Delta S = 2) processes as seen in neutral Kaon oscillation (K_0 \leftrightarrow \bar{K_0} ) [1]. These processes should be smaller than the predictions obtained from the conventional 3-quark theory. There are two diagrams that contribute to neutral kaon oscillation [2].

Neutral Kaon Oscillation

In a 3-quark model, the fermion propagators can only be up quark propagators, they both give a positive contribution to the process, and it seems as though we are stuck with these \Delta S = 2 oscillations. It would be nice if we could somehow suppress these diagrams.

Solution

Introduce another up-type quark and one new quantum number called “Charm,” designed to counteract the effects of “Strangeness” carried by the strange quark. With some insight from the future, we will call this new up-type quark the charm quark.

Now, in our 4-quark model (up, down, strange, and charm), we have up and charm quark propagators a cancellation can in-principle occur. First proposed by Glashow, Iliopoulos, and Maiani, this mechanism would later become known as the “GIM Mechanism” [3]. The result is a suppression of these \Delta S = 2 processes which is exactly what we need to make the theory consistent with experiments.

Experimental Evidence

Amusingly, two different experiments reported the same resonance at nearly the same time. In 1974, both the Stanford Linear Accelerator [4] and the Brookhaven National Lab [5] both reported a resonance at 3.1 GeV. SLAC named this particle the \psi, and Brookhaven named it the J and thus the J/ \psi particle was born. It turns out that the resonance they detected was “Charmonium,” a bound state of c \bar{c}.

References

[1] – Report on Long Lived K0. This paper experimentally confirms neutral Kaons oscillation.

[2] – Kaon Physics. This powerpoint contains the picture of neutral Kaon oscillation that I used.

[3] – Weak Interactions with Lepton-Hadron Symmetry. This is the paper by Glashow, Iliopoulos, and Maiani that outlines the GIM mechanism.

[4] – Discovery of a Narrow Resonance in e+e Annihilation. This is the SLAC discovery of the J \psi particle.

[5] – Experimental Observation of a Heavy Particle J This is the Brookhaven discovery of the J \psi particle.

[A] – https://aip.scitation.org/doi/pdf/10.1063/1.57782. History of Charm Quark

Listening for axions

If dark matter actually consists of a new kind of particle, then the most up-and-coming candidate is the axion. The axion is a consequence of the Peccei-Quinn mechanism, a plausible solution to the “strong CP problem,” or why the strong nuclear force conserves the CP-symmetry although there are no reasons for it to. It is a very light neutral boson, named by Frank Wilczek after a detergent brand (in a move that obviously dates its introduction in the ’70s).

Axion decay in a magnetic field: the result is a photon. (Source.)

Most experiments that try to directly detect dark matter have looked for WIMPs (weakly interacting massive particles). However, as those searches have not borne fruit, the focus started turning to axions, which make for good candidates given their properties and the fact that if they exist, then they exist in multitudes throughout the galaxies. Axions “speak” to the QCD part of the Standard Model, so they can appear in interaction vertices with hadronic loops. The end result is that axions passing through a magnetic field will convert to photons.

In practical terms, their detection boils down to having strong magnets, sensitive electronics and an electromagnetically very quiet place at one’s disposal. One can then sit back and wait for the hypothesized axions to pass through the detector as earth moves through the dark matter halo surrounding the Milky Way. Which is precisely why such experiments are known as “haloscopes.”

Now, the most veteran haloscope of all published significant new results. Alas, it is still empty-handed, but we can look at why its update is important and how it was reached.

ADMX (Axion Dark Matter eXperiment) of the University of Washington has been around for a quarter-century. By listening for signals from axions, it progressively gnaws away at the space of allowed values for their mass and coupling to photons, focusing on an area of interest:

ADMX_results_2020
Latest exclusion limits on the axion mass and coupling to photons.

Unlike higher values, this area is not excluded by astrophysical considerations (e.g. stars cooling off through axion emission) and other types of experiments (such as looking for axions from the sun). In addition, the bands above the lines denoted “KSVZ” and “DFSZ” are special. They correspond to the predictions of two models with favorable theoretical properties. So, ADMX is dedicated to scanning this parameter space. And the new analysis added one more year of data-taking, making a significant dent in this ballpark.

As mentioned, the presence of axions would be inferred from a stream of photons in the detector. The excluded mass range was scanned by “tuning” the experiment to different frequencies, while at each frequency step longer observation times probed smaller values for the axion-photon coupling.

Two things that this search needs is a lot of quiet and some good amplification, as the signal from a typical axion is expected to be as weak as the signal from a mobile phone left on the surface of Mars (around 10-23W). The setup is indeed stripped of noise by being placed in a dilution refrigerator, which keeps its temperature at a few tenths of a degree above absolute zero. This is practically the domain governed by quantum noise, so advantage can be taken of the finesse of quantum technology: for the first time ADMX used SQUIDs, superconducting quantum interference devices, for the amplification of the signal.

The heart of the experiment inside the refrigerator. The resonant frequency of the cavity is tuned to match the photons -hopefully- given off by axions. (Source.)




In the end, a good chunk of the parameter space which is favored by the theory might have been excluded, but the haloscope is ready to look at the rest of it. Just think of how, one day, a pulse inside a small device in a university lab might be a messenger of the mysteries unfolding across the cosmos.

References:

Publication by the ADMX collaboration. (arXiv)

Learn more:

  1. The theory behind axions.
  2. The hitchhiker’s guide to the dilution refrigerator.
  3. Intro to KSVZ and DFSZ axions (and more).
  4. Resonant cavities.