The exciting Twitter rumors have been confirmed! On Thursday, LIGO finally announced the first direct observation of gravitational waves, a prediction 100 years in the making. The media storm has been insane, with physicists referring to the discovery as “more significant than the discovery of the Higgs boson… the biggest scientific breakthrough of the century.” Watching Thursday’s press conference from CERN, it was hard not to make comparisons between the discovery of the Higgs and LIGO’s announcement.
Long standing Searches for well known phenomena
The Higgs boson was billed as the last piece of the Standard Model puzzle. The existence of the Higgs was predicted in the 1960s in order to explain the mass of vector bosons of the Standard Model, and avoid non-unitary amplitudes in W boson scattering. Even if the Higgs didn’t exist, particle physicists expected new physics to come into play at the TeV Scale, and experiments at the LHC were designed to find it.
Similarly, gravitational waves were the last untested fundamental prediction of General Relativity. At first, physicists remained skeptical of the existence of gravitational waves, but the search began in earnest with Joseph Webber in the 1950s (Forbes). Indirect evidence of gravitational waves was demonstrated a few decades later. A binary system consisting of a pulsar and neutron star was observed to release energy over time, presumably in the form of gravitational waves. Using Webber’s method for inspiration, LIGO developed two detectors of unprecedented precision in order to finally make direct observation.
Unlike the Higgs, General Relativity makes clear predictions about the properties of gravitational waves. Waves should travel at the speed of light, have two polarizations, and interact weakly with matter. Scientists at LIGO were even searching for a very particular signal, described as a characteristic “chirp”. With the upgrade to the LIGO detectors, physicists were certain they’d be capable of observing gravitational waves. The only outstanding question was how often these observations would happen.
The search for the Higgs involved more uncertainties. The one parameter essential for describing the Higgs, its mass, is not predicted by the Standard Model. While previous collider experiments at LEP and Fermilab were able to set limits on the Higgs mass, the observed properties of the Higgs were ultimately unknown before the discovery. No one knew whether or not the Higgs would be a Standard Model Higgs, or part of a more complicated theory like Supersymmetry or technicolor.
Monumental scientific endeavors
Answering the most difficult questions posed by the universe isn’t easy, or cheap. In terms of cost, both LIGO and the LHC represent billion dollar investments. Including the most recent upgrade, LIGO cost a total $1.1 billion, and when it was originally approved in 1992, “it represented the biggest investment the NSF had ever made” according to France Córdova, NSF director. The discovery of the Higgs was estimated by Forbes to cost a total of $13 billion, a hefty price to be paid by CERN’s member and observer states. Even the electricity bill costs more than $200 million per year.
The large investment is necessitated by the sheer monstrosity of the experiments. LIGO consists of two identical detectors roughly 4 km long, built 3000 km apart. Because of it’s large size, LIGO is capable of measuring ripples in space 10000 times smaller than an atomic nucleus, the smallest scale ever measured by scientists (LIGO Fact Page). The size of the LIGO vacuum tubes is only surpassed by those at the LHC. At 27 km in circumference, the LHC is the single largest machine in the world, and the most powerful particle accelerator to date. It only took a handful of people to predict the existence of gravitational waves and the Higgs, but it took thousands of physicists and engineers to find them.
Life after Discovery
Even the language surrounding both announcements is strikingly similar. Rumors were circulating for months before the official press conferences, and the expectations from each respective community were very high. Both discoveries have been touted as the discoveries of the century, with many experts claiming that results would usher in a “new era” of particle physics or observational astronomy.
With a few years of hindsight, it is clear that the “new era” of particle physics has begun. Before Run I of the LHC, particle physicists knew they needed to search for the Higgs. Now that the Higgs has been discovered, there is much more uncertainty surrounding the field. The list of questions to try and answer is enormous. Physicists want to understand the source of the Dark Matter that makes up roughly 25% of the universe, from where neutrinos derive their mass, and how to quantize gravity. There are several ad hoc features of the Standard Model that merit additional explanation, and physicists are still searching for evidence of supersymmetry and grand unified theories. While the to-do list is long, and well understood, how to solve these problems is not. Measuring the properties of the Higgs does allow particle physicists to set limits on beyond the Standard Model Physics, but it’s unclear at which scale new physics will come into play, and there’s no real consensus about which experiments deserve the most support. For some in the field, this uncertainty can result in a great deal of anxiety and skepticism about the future. For others, the long to-do list is an absolutely thrilling call to action.
With regards to the LIGO experiment, the future is much more clear. LIGO has only published one event from 16 days of data taking. There is much more data already in the pipeline, and more interferometers like VIRGO and (e)LISA, planning to go online in the near future. Now that gravitational waves have been proven to exist, they can be used to observe the universe in a whole new way. The first event already contains an interesting surprise. LIGO has observed two inspriraling black holes of 36 and 29 solar masses, merging into a final black hole of 62 solar masses. The data thus confirmed the existence of heavy stellar black holes, with masses more than 25 times greater than the sun, and that binary black hole systems form in nature (Atrophysical Journal). When VIRGO comes online, it will be possible to triangulate the source of these gravitational waves as well. LIGO’s job is to watch, and see what other secrets the universe has in store.
Original PRL Article: Observation of Gravitational Waves from a Binary Black Hole Merger