The Mini and Micro BooNE Mystery, Part 2: Theory

Title: “Search for an Excess of Electron Neutrino Interactions in MicroBooNE Using Multiple Final State Topologies”

Authors: MicroBooNE Collaboration


This is the second post in a series on the latest MicroBooNE results, covering the theory side. Click here to read about the experimental side. 

Few stories in physics are as convoluted as the one written by neutrinos. These ghost-like particles, a notoriously slippery experimental target and one of the least-understood components of the Standard Model, are making their latest splash in the scientific community through MicroBooNE, an experiment at FermiLab that unveiled its first round of data earlier this month. While MicroBooNE’s predecessors have provided hints of a possible anomaly within the neutrino sector, its own detectors have yet to uncover a similar signal. Physicists were hopeful that MicroBooNE would validate this discrepancy, yet the tale is turning out to be much more nuanced than previously thought.

Unexpected Foundations

Originally proposed by Wolfgang Pauli in 1930 as an explanation for missing momentum in certain particle collisions, the neutrino was added to the Standard Model as a massless particle that can come in one of three possible flavors: electron, muon, and tau. At first, it was thought that these flavors are completely distinct from one another. Yet when experiments aimed to detect a particular neutrino type, they consistently measured a discrepancy from their prediction. A peculiar idea known as neutrino oscillation presented a possible explanation: perhaps, instead of propagating as a singular flavor, a neutrino switches between flavors as it travels through space. 

This interpretation emerges fortuitously if the model is modified to give the neutrinos mass. In quantum mechanics, a particle’s mass eigenstate — the possible masses a particle can be found to have upon measurement — can be thought of as a traveling wave with a certain frequency. If the three possible mass eigenstates of the neutrino are different, meaning that at most one of the mass values could be zero, this creates a phase shift between the waves as they travel. It turns out that the flavor eigenstates — describing which of the electron, muon, or tau flavors the neutrino is measured to possess — are then superpositions of these mass eigenstates. As the neutrino propagates, the relative phase between the mass waves varies such that when the flavor is measured, the final superposition could be different from the initial one, explaining how the flavor can change. In this way, the mass eigenstates and the flavor eigenstates of neutrinos are said to “mix,” and we can mathematically characterize this model via mixing parameters that encode the mass content of each flavor eigenstate.

A visual representation of how neutrino oscillation works. From:

These massive oscillating neutrinos represent a radical departure from the picture originally painted by the Standard Model, requiring a revision in our theoretical understanding. The oscillation phenomenon also poses a unique experimental challenge, as it is especially difficult to unravel the relationships between neutrino flavors and masses. Thus far, physicists have only been able to determine the sum of neutrino masses, and have found that this value is constrained to be exceedingly small, posing yet another mystery. The neutrino experiments of the past three decades have set their sights on measuring the mixing parameters in order to determine the probabilities of the possible flavor switches.

A Series of Perplexing Experiments

In 1993, scientists in Los Alamos peered at the data gathered by the Liquid Scintillator Neutrino Detector (LSND) to find something rather strange. The group had set out to measure the number of electron neutrino events produced via decays in their detector, and found that this number exceeded what had been predicted by the three-neutrino oscillation model. In 2002, experimentalists turned on the complementary MiniBooNE detector at FermiLab (BooNE is an acronym for Booster Neutrino Experiment), which searched for oscillations of muon neutrinos into electron neutrinos, and again found excess electron neutrino events. For a more detailed account of the setup of these experiments, check out Oz Amram’s latest piece.

While two experiments are notable for detecting excess signal, they stand as outliers when we consider all neutrino experiments that have collected oscillation data. Collaborations that were taking data at the same time as LSND and MiniBooNE include: MINOS (Main Injector Neutrino Oscillation Search), KamLAND (Kamioka Liquid Scintillator Antineutrino Detector), and IceCube (surprisingly, not a fancy acronym, but deriving its name from the fact that it’s located under ice in Antarctica), to name just a few prominent ones. Their detectors targeted neutrinos from a beamline, nearby nuclear reactors, and astrophysical sources, respectively. Not one found a mismatch between predicted and measured events. 

The results of these other experiments, however, do not negate the findings of LSND and MiniBooNE. This extensive experimental range — probing several sources of neutrinos, and detecting with different hardware specifications — is necessary in order to consider the full range of possible neutrino mixing parameters and masses. Each model or experiment is endowed with a parameter space: a set of allowed values that its parameters can take. In this case, the neutrino mass and mixing parameters form a two-dimensional grid of possibilities. The job of a theorist is to find a solution that both resolves the discrepancy and has a parameter space that overlaps with allowed experimental parameters. Since LSND and MiniBooNE had shared regions of parameter space, the resolution of this mystery should be able to explain not only the origins of the excess, but why no similar excess was uncovered by other detectors.

A simple explanation to the anomaly emerged and quickly gained traction: perhaps the data hinted at a fourth type of neutrino. Following the logic of the three-neutrino oscillation model, this interpretation considers the possibility that the three known flavors have some probability of oscillating into an additional fourth flavor. For this theory to remain consistent with previous experiments, the fourth neutrino would have to provide the LSND and MiniBooNE excess signals, while at the same time sidestepping prior detection by coupling to only the force of gravity. Due to its evasive behavior, this potential fourth neutrino has come to be known as the sterile neutrino. 

The Rise of the Sterile Neutrino

The sterile neutrino is a well-motivated and especially attractive candidate for beyond the Standard Model physics. It differs from ordinary neutrinos, also called active neutrinos, by having the opposite “handedness”. To illustrate this property, imagine a spinning particle. If the particle is spinning with a leftward orientation, we say it is “left-handed”, and if it is spinning with a rightward orientation, we say it is “right-handed”. Mathematically, this quantity is called helicity, which is formally the projection of a particle’s spin along its direction of momentum. However, this helicity depends implicitly on the reference frame from which we make the observation. Because massive particles move slower than the speed of light, we can choose a frame of reference such that the particle appears to have momentum going in the opposite direction, and as a result, the opposite helicity. Conversely, because massless particles move at the speed of light, they will have the same helicity in every reference frame. 

An illustration of chirality. We define, by convention, a “right-handed” particle as one whose spin and momentum directions align, and a “left-handed” particle as one whose spin and momentum directions are anti-aligned. Source: Wikipedia.

This frame-dependence unnecessarily complicates calculations, but luckily we can instead employ a related quantity that encapsulates the same properties while bypassing the reference frame issue: chirality. Much like helicity, while massless particles can only display one chirality, massive particles can be either left- or right-chiral. Neutrinos interact via the weak force, which is famously parity-violating, meaning that it has been observed to preferentially interact only with particles of one particular chirality. Yet massive neutrinos could presumably also be right-handed — there’s no compelling reason to think they shouldn’t exist. Sterile neutrinos could fill this gap.

They would also lend themselves nicely to addressing questions of dark matter and baryon asymmetry. The former — the observed excess of gravitationally-interacting matter over light-emitting matter by a factor of 20 — could be neatly explained away by the detection of a particle that interacts only gravitationally, much like the sterile neutrino. The latter, in which our patch of the universe appears to contain considerably more matter than antimatter, could also be addressed by the sterile neutrino via a proposed model of neutrino mass acquisition known as the seesaw mechanism. 

In this scheme, active neutrinos are represented as Dirac fermions: spin-½ particles that have a unique anti-particle, the oppositely-charged particle with otherwise the same properties. In contrast, sterile neutrinos are considered to be Majorana fermions: spin-½ particles that are their own antiparticle. The masses of the active and sterile neutrinos are fundamentally linked such that as the value of one goes up, the value of the other goes down, much like a seesaw. If sterile neutrinos are sufficiently heavy, this mechanism could explain the origin of neutrino masses and possibly even why the masses of the active neutrinos are so small. 

These considerations position the sterile neutrino as an especially promising contender to address a host of Standard Model puzzles. Yet it is not the only possible solution to the LSND/MiniBooNE anomaly — a variety of alternative theoretical interpretations invoke dark matter, variations on the Higgs boson, and even more complicated iterations of the sterile neutrino. MicroBooNE was constructed to traverse this range of scenarios and their corresponding signatures. 

Open Questions

After taking data for three years, the collaboration has compiled two dedicated analyses: one that searches for single electron final states, and another that searches for single photon final states. Each of these products can result from electron neutrino interactions — yet both analyses did not detect an excess, pointing to no obvious signs of new physics via these channels. 

Above, we can see that the expected number of electron neutrino events agrees well with the number of measured events, disfavoring the MiniBooNE excess. Source:

Although confounding, this does not spell death for the sterile neutrino. A significant disparity between MiniBooNE and MicroBooNE’s detectors is the ability to discern between single and multiple electron events — MiniBooNE lacked the resolution that MicroBooNE was upgraded to achieve. MiniBooNE also was unable to fully distinguish between electron and photon events in the same way as MicroBooNE. The possibility remains that there exist processes involving new physics that were captured by LSND and MiniBooNE — perhaps decays resulting in two electrons, for instance.  

The idea of a right-handed neutrino remains a promising avenue for beyond the Standard Model physics, and it could turn out to have a mass much larger than our current detection mechanisms can probe. The MicroBooNE collaboration has not yet done a targeted study of the sterile neutrino, which is necessary in order to fully assess how their data connects to its possible signatures. There still exist regions of parameter space where the sterile neutrino could theoretically live, but with every excluded region of parameter space, it becomes harder to construct a theory with a sterile neutrino that is consistent with experimental constraints. 

While the list of neutrino-based mysteries only seems to grow with MicroBooNE’s latest findings, there are plenty of results on the horizon that could add clarity to the picture. Researchers are anticipating the output of more data from MicroBooNE as well as more specific theoretical studies of the results and their relationship to the LSND/MiniBooNE anomaly, the sterile neutrino, and other beyond the Standard Model scenarios. MicroBooNE is also just one in a series of planned neutrino experiments, and will operate alongside the upcoming SBND (Short-Baseline Neutrino Detector) and ICARUS (Imaging Cosmic Rare and Underground Signals), further expanding the parameter space we are able to probe.

The neutrino sector has proven to be fertile ground for physics beyond the Standard Model, and it is likely that this story will continue to produce more twists and turns. While we have some promising theoretical explanations, nothing theorists have concocted thus far has fit seamlessly with our available data. More data from MicroBooNE and near-future detectors is necessary to expand our understanding of these puzzling pieces of particle physics. The neutrino story is pivotal to the tome of the Standard Model, and may be the key to writing the next chapter in our understanding of the fundamental ingredients of our world.

Further Reading

  1. A review of neutrino oscillation and mass properties:
  2. An in-depth review of the LSND and MiniBooNE results:

The Mini and Micro Boone Mystery, Part 1 Experiment

Title: “Search for an Excess of Electron Neutrino Interactions in MicroBooNE Using Multiple Final State Topologies”

Authors: The MiniBoone Collaboration


This is the first post in a series on the latest MicroBooNE results, covering the experimental side. Click here to read about the theory side. 

The new results from the MicroBoone experiment received a lot of excitement last week, being covered by several major news outlets. But unlike most physics news stories that make the press, it was a null result; they did not see any evidence for new particles or interactions. So why is it so interesting? Particle physics experiments produce null results every week, but what made this one newsworthy is that MicroBoone was trying to check the results from two previous experiments LSND and MiniBoone, that did see something anomalous with very high statistical evidence. If the LSND/MiniBoone result was confirmed, it would have been a huge breakthrough in particle physics, but now that it wasn’t many physicists are scratching their heads trying to make sense of these seemingly conflicting results. However, the MicroBoone experiment is not exactly the same as MiniBoone/LSND, and understanding the differences between the two sets of experiments may play an important role in unraveling this mystery.

Accelerator Neutrino Basics

All of these experiments are ‘accelerator neutrino experiments’, so lets first review what that means. Neutrino’s are ‘ghostly’ particles that are difficult to study (check out this post for more background on neutrinos).  Because they only couple through the weak force, neutrinos don’t like to interact with anything very much. So in order to detect them you need both a big detector with a lot of active material and a source with a lot of neutrinos. These experiments are designed to detect neutrinos produced in a human-made beam. To make the beam, a high energy beam of protons is directed at a target. These collisions produce a lot of particles, including unstable bound states of quarks like pions and kaons. These unstable particles have charge, so we can use magnets to focus them into a well-behaved beam.  When the pions and kaons decay they usually produce a muon and a muon neutrino. The beam of pions and kaons is pointed at an underground detector located a few hundred meters (or kilometers!) away, and then given time to decay. After they decay there will be a nice beam of muons and muon neutrinos. The muons can be stopped by some kind of shielding (like the earth’s crust), but the neutrinos will sail right through to the detector.

A diagram showing the basics of how a neutrino beam is made. Source

Nearly all of the neutrinos from the beam will still pass right through your detector, but a few of them will interact, allowing you to learn about their properties.

All of these experiments are considered ‘short-baseline’ because the distance between the neutrino source and the detector is only a few hundred meters (unlike the hundreds of kilometers in other such experiments). These experiments were designed to look for oscillation of the beam’s muon neutrinos into electron neutrinos which then interact with their detector (check out this post for some background on neutrino oscillations). Given the types of neutrinos we know about and their properties, this should be too short of a distance for neutrinos to oscillate, so any observed oscillation would be an indication something new (beyond the Standard Model) was going on.

The LSND + MiniBoone Anomaly

So the LSND and MiniBoone ‘anomaly’ was an excess of events above backgrounds that looked like electron neutrinos interacting with their detector. Both detectors were based on similar technology and were a similar distance from their neutrino source. Their detectors were essentially big tanks of mineral oil lined with light-detecting sensors.

An engineer styling inside the LSND detector. Source

At these energies the most common way neutrinos interact is to scatter against a neutron to produce a proton and a charged lepton (called a ‘charged current’ interaction). Electron neutrinos will produce outgoing electrons and muon neutrinos will produce outgoing muons.

A diagram of a ‘charged current’ interaction. A muon neutrino comes in and scatters against a neutron, producing a muon and a proton. Source

When traveling through the mineral oil these charged leptons will produce a ring of Cherenkov light which is detected by the sensors on the edge of the detector. Muons and electrons can be differentiated based on the characteristics of the Cherenkov light they emit. Electrons will undergo multiple scatterings off of the detector material while muons will not. This makes the Cherenkov rings of electrons ‘fuzzier’ than those of muons. High energy photons can produce electrons positron pairs which look very similar to a regular electron signal and are thus a source of background. 

A comparison of muon and electron Cherenkov rings from the Super-Kamiokande experiment. Electrons produce fuzzier rings than muons. Source

Even with a good beam and a big detector, the feebleness of neutrino interactions means that it takes a while to get a decent number of potential events. The MiniBoone experiment ran for 17 years looking for electron neutrinos scattering in their detector. In MiniBoone’s most recent analysis, they saw around 600 more events than would be expected if there were no anomalous electron neutrinos reaching their detector. The statistical significance of this excess, 4.8-sigma, was very high. Combining with LSND which saw a similar excess, the significance was above 6-sigma. This means its very unlikely this is a statistical fluctuation. So either there is some new physics going on or one of their backgrounds has been seriously under-estimated. This excess of events is what has been dubbed the ‘MiniBoone anomaly’.

The number of events seen in the MiniBoone experiment as a function of the energy seen in the interaction. The predicted number of events from various known background sources are shown in the colored histograms. The best fit to the data including the signal of anomalous oscillations is shown by the dashed line. One can see that at low energies the black data points lie significantly above these backgrounds and strongly favor the oscillation hypothesis.

The MicroBoone Result

The MicroBoone experiment was commissioned to verify the MiniBoone anomaly as well as test out a new type of neutrino detector technology. The MicroBoone is the first major neutrino experiment to use a ‘Liquid Argon Time Projection Chamber’ detector. This new detector technology allows more detailed reconstruction of what is happening when a neutrino scatters in the detector. The the active volume of the detector is liquid Argon, which allows both light and charge to propagate through it. When a neutrino scatters in the liquid Argon, scintillation light is produced that is collected in sensors. As charged particles created in the collision pass through the liquid Argon they ionize atoms they pass by. An electric field applied to the detector causes this produced charge to drift towards a mesh of wires where it can be collected. By measuring the difference in arrival time between the light and the charge, as well as the amount of charge collected at different positions and times, the precise location and trajectory of the particles produced in the collision can be determined. 

A beautiful reconstructed event in the MicroBoone detector. The colored lines show the tracks of different particles produced in the collision, all coming from a single point where the neutrino interaction took place. One can also see that one of the tracks produced a shower of particles away from the interaction vertex.

This means that unlike the MiniBoone and LSND, MicroBoone can see not just the lepton, but also the hadronic particles (protons, pions, etc) produced when a neutrino scatters in their detector. This means that the same type of neutrino interaction actually looks very different in their detector. So when they went to test the MiniBoone anomaly they adopted multiple different strategies of what exactly to look for. In the first case they looked for the type of interaction that an electron neutrino would have most likely produced: an outgoing electron and proton whose kinematics match those of a charged current interaction. Their second set of analyses, designed to mimic the MiniBoone selection, are slightly more general. They require one electron and any number of protons, but no pions. Their third analysis is the most general and requires an electron along with anything else. 

These different analyses have different levels of sensitivity to the MiniBoone anomaly, but all of them are found to be consistent with a background-only hypothesis: there is no sign of any excess events. Three out of four of them even see slightly less events than the expected background. 

A summary of the different MicroBoone analyses. The Y-axis shows the ratio of observed to expected number of events expected if there was only background present. The red lines show the excess predicted to be seen if the MiniBoone anomaly produced a signal in each channel. One can see that the black data points are much more consistent with the grey bands showing the background only prediction than amount predicted if the MiniBoone anomaly was present.

Overall the MicroBoone data rejects the hypothesis that the MiniBoone anomaly is due to electron neutrino charged current interactions at quite high significance (>3sigma). So if its not electron neutrinos causing the MiniBoone anomaly, what is it?

What’s Going On?

Given that MicroBoone did not see any signal, many would guess that MiniBoone’s claim of an excess must be flawed and they have underestimated one of their backgrounds. Unfortunately it is not very clear what that could be. If you look at the low-energy region where MiniBoone has an excess, there are three major background sources: decays of the Delta baryon that produce a photon (shown in tan), neutral pions decaying to pairs of photons (shown in red), and backgrounds from true electron neutrinos (shown in various shades of green). However all of these sources of background seem quite unlikely to be the source of the MiniBoone anomaly.

Before releasing these results, MicroBoone performed a dedicated search for Delta baryons decaying into photons, and saw a rate in agreement with the theoretical prediction MiniBoone used, and well below the amount needed to explain the MiniBoone excess.

Backgrounds from true electron neutrinos produced in the beam, as well as from the decays of muons, should not concentrate only at low energies like the excess does, and their rate has also been measured within MiniBoone data by looking at other signatures.

The decay of a neutral pions can produce two photons, and if one of them escapes detection, a single photon will mimic their signal. However one would expect that it would be more likely that photons would escape the detector near its edges, but the excess events are distributed uniformly in the detector volume.

So now the mystery of what could be causing this excess is even greater. If it is a background, it seems most likely it is from an unknown source not previously considered. As will be discussed in our part 2 post, its possible that MiniBoone anomaly was caused by a more exotic form of new physics; possibly the excess events in MiniBoone were not really coming from the scattering of electron neutrinos but something else that produced a similar signature in their detector. Some of these explanations included particles that decayed into pairs of electrons or photons. These sorts of explanations should be testable with MicroBoone data but will require dedicated analyses for their different signatures.

So on the experimental side, we now we are left to scratch our heads and wait for new results from MicroBoone that may help get to the bottom of this.

Click here for part 2 of our MicroBoone coverage that goes over the theory side of the story!

Read More

Is the Great Neutrino Puzzle Pointing to Multiple Missing Particles?” – Quanta Magazine article on the new MicroBoone result

“Can MiniBoone be Right?” – Resonaances blog post summarizing the MiniBoone anomaly prior to the the MicroBoone results

A review of different types of neutrino detectors – from the T2K experiment