Article title: “Dark Quark Nuggets”
Authors: Yang Baia, Andrew J. Long, and Sida Lu
Reference: arXiv:1810.04360
Information, gold and chicken. What do they all have in common? They can all come in the form of nuggets. Naturally one would then be compelled to ask: “what about fundamental particles? Could they come in nugget form? Could that hold the key to dark matter?” Lucky for you this has become the topic of some ongoing research.
A ‘nugget’ in this context refers to large macroscopic ‘clumps’ of matter formed in the early universe that could possibly survive up until the present day to serve as a dark matter candidate. Much like nuggets of the edible variety, one must be careful to combine just the right ingredients in just the right way. In fact, there are generally three requirements to forming such an exotic state of matter:
- (At least) two different vacuum states separated by a potential ‘barrier’ where a phase transition occurs (known as a first-order phase transition).
- A charge which is conserved globally which can accumulate in a small part of space.
- An excess of matter over antimatter on the cosmological scale, or in other words, a large non-zero macroscopic number density of global charge.
Back in the 1980s, before much work was done in the field of lattice quantum chromodynamics (lQCD), Edward Witten put forward the idea that the Standard Model QCD sector could in fact accommodate such an exotic form of matter. Quite simply this would occur at the early phase of the universe when the quarks undergo color confinement to form hadrons. In particular Witten’s were realized as large macroscopic clumps of ‘quark matter’ with a very large concentration of baryon number, . However, with the advancement of lQCD techniques, the phase transition in which the quarks become confined looks more like a continuous ‘crossover’ (i.e. a second-order phase transition), making the idea in the Standard Model somewhat unfeasible.
Theorists, particularly those interested in dark matter, are not confined (for lack of a better term) to the strict details of the Standard Model and most often look to the formation of sometimes complicated ‘dark sectors’ invisible to us but readily able to provide the much needed dark matter candidate.
Dark QCD?
The problem of obtaining a first-order phase transition to form our quark nuggets need not be a problem if we consider a QCD-type theory that does not interact with the Standard Model particles. More specifically, we can consider a set of dark quarks, dark gluons with arbitrary characteristics like masses, couplings, numbers of flavors or numbers of colors (which of course are quite settled for the Standard Model QCD case). In fact, looking at the numbers of flavors and colors of dark QCD in Figure 1, we can see in the white unshaded region a number of models that can exist with a first-order phase transition, as required to form these dark quark nuggets.
As with normal quarks, the distinction between the two phases actually refers to a process known as chiral symmetry breaking. When the temperature of the universe cools to this particular scale, color confinement of quarks occurs around the same time, such that no single-color quark can be observed on its own – only in colorless bound states.
Forming a nugget
As we have briefly mentioned so far, the dark nuggets are formed as the universe undergoes a ‘dark’ phase transition from a phase where the dark color is unconfined to a phase where it is confined. At some critical temperature, due to the nature of first-order phase transitions, bubbles of the new confined phase (full of dark hadrons) begin to nucleate out of the dark quark-gluon plasma. The growth of these bubbles are driven by a difference in pressure, characteristic of the fact that the unconfined and confined phase vacuums states are of different energy. With this emerging bubble wall, the almost massless particles from the dark plasma scatter from the wall containing heavy dark (anti)baryons and hence a large amount of dark baryon number accumulates in this phase. Eventually, as these bubbles merge and coalesce, we would expect local regions of remaining dark quark-gluon plasma, unconfined and stable from collapse due to the Fermi degeneracy pressure (see reference below for more on this). An illustration is shown in Figure 2. Calculations with varying energy scales of confinement estimate their masses are anywhere between to grams with radii from to cm and so can truly be classed as macroscopic dark objects!
How do we know they could be there?
There are a number of ways to infer the existence of dark quark nuggets, but two of the main ones are: (i) as a dark matter candidate and (ii) through probes of the dark QCD model that provides them. Cosmologically, the latter can imply the existence of a dark form of radiation which ultimately can lead to effects on the Cosmic Microwave Background Radiation (CMB). In a similar vein, one recent avenue of study today is the production of a steady background of gravitational waves emerging from the existence of a first-order phase transition – one of the key requirements for dark quark nugget formation. More importantly, they can be probed through astrophysical means if they share some coupling (albeit small) with the Standard Model particles. The standard technique of direct detection with Earth-based experiments could be the way to go – but furthermore, there may be the possibility of cosmic ray production from collisions of multiple dark quark nuggets. Among these are a number of other observations over the massive range of nugget sizes and masses shown in Figure 3.
To conclude, note that in such a generic framework, a number of well-motivated theories may predict (or in fact have unavoidable) instances of quark nuggets that may serve as interesting dark matter candidates with a lot of fun phenomenology to play with. It is only up to the theorist’s imagination where to go from here!
References and further reading:
- Witten’s original quark matter, Strangelets, https://en.wikipedia.org/wiki/Strangelet. (For conspiracy theorists – read up on the ‘dangers’ of some types of strangelet production at the LHC http://cdsweb.cern.ch/search?sysno=002372601cer)
- General discussion on chiral symmetry breaking but also its application to QCD: https://en.wikipedia.org/wiki/Chiral_symmetry_breaking
- More on Fermi degeneracy and how they can keep certain stars stable against gravitational collapse https://en.wikipedia.org/wiki/Degenerate_matter
- Remember that old DAMA/Libra dark matter modulation signal? See how quark nuggets may help explain this controversy: https://www.science20.com/tommaso_dorigo/quark_nuggets_of_dark_matter_as_the_origin_of_damalibra_signal-241740