Does antihydrogen really matter?

Article title: Investigation of the fine structure of antihydrogen

Authors: The ALPHA Collaboration

Reference: https://doi.org/10.1038/s41586-020-2006-5 (Open Access)

Physics often doesn’t delay our introduction to one of the most important concepts in history – symmetries (as I am sure many fellow physicists will agree). From the idea that “for every action there is an equal and opposite reaction” to the vacuum solutions of electric and magnetic fields from Maxwell’s equations, we often take such astounding universal principles for granted. For example, how many years after you first calculated the speed of a billiard ball using conservation of momentum did you realise that what you were doing was only valid because of the fundamental symmetrical structure of the laws of nature? And hence goes our life through physics education – we first begin from what we ‘see’ to understanding what the real mechanisms are that operate below the hood.

These days our understanding of symmetries and how they relate to the phenomena we observe have developed so comprehensively throughout the 20th century that physicists are now often concerned with the opposite approach – applying the fundamental mechanisms to determine where the gaps are between what they predict and what we observe.

So far one of these important symmetries has stood up the test of time with no observable violation so far being reported. This is the simultaneous transformation of charge conjugation (C), parity (P) and time reversal (T), or CPT for short. A ‘CPT-transformed’ universe would be like a mirror-image of our own, with all matter as antimatter and opposite momenta. the amazing thing is that under all these transformations, the laws of physics behave the exact same way. With such an exceptional result, we would want to be absolutely sure that all our experiments say the same thing, so that brings us the our current topic of discussion – antihydrogen.

Matter, but anti.

Figure 1: The Hydrogen atom and its nemesis – antihydrogen. Together they are: Light. Source: Berkeley Science Review

The trick with antimatter is to keep it as far away from normal matter as possible. Antimatter-matter pairs readily interact, releasing vast amounts of energy proportional to the mass of the particles involved. Hence it goes without saying that we can’t just keep them sealed up in Tupperware containers and store them next to aunty’s lasagne. But what if we start simple – gather together an antiproton and a single positron and voila, we have antihydrogen – the antimatter sibling to the most abundant element in nature. Well this is precisely what the international ALPHA collaboration at CERN has been concerned with, providing “slowed-down” antiprotons with positrons in a device known as a Penning trap. Just like hydrogen, the orbit of a positron around an antiproton behaves like a tiny magnet, a property known as an object’s magnetic moment. The difficulty however is in the complexity of external magnetic field required to ‘trap’ the neutral antihydrogen in space. Therefore not surprisingly, these are the atoms of very low kinetic energy (i.e. cold) that cannot overcome the weak effect of external magnetism.

There are plenty more details of how the ALPHA collaboration acquires antihydrogen for study. I’ll leave this up to a reference at the end. What I’ll focus on is what we can do with it and what it means for fundamental physics. In particular, one of the most intriguing predictions of the invariance of the laws of physics under charge, parity and time transformations is that antihydrogen should share many of the same properties as hydrogen. And not just the mass and magnetic moment, but also the fine structure (atomic transition frequencies). In fact, the most successful theory of the 20th century, quantum electrodynamics (QED), properly accomodating anti-electronic interactions, also predicts a foundational test for both matter and antimatter hydrogen – the splitting of the 2S_{1/2} and 2P_{1/2} energy levels (I’ll leave a reference to a refresher on this notation). This is of course known as the Nobel-Prize winning Lamb Shift in hydrogen, a feature of the interaction between the quantum fluctuations in the electromagnetic field and the orbiting electron.

I’m feelin’ hyperfine

Of course it is only very recently that atomic versions of antimatter have been able to be created and trapped, allowing researchers to uniquely study the foundations of QED (and hence modern physics itself) from the perspective of this mirror-reflected anti-world. Very recently, the ALPHA collaboration have been able to report the fine structure of antihydrogen up to the n=2 state using laser-induced optical excitations from the ground state and a strong external magnetic field. Undergraduates by now will have seen, at least even qualitatively, that increasing the strength of an external magnetic field on an atomic structure also increases the gaps in the energy levels, and hence frequencies of their transitions. Maybe a little less known is the splitting due to the interaction between the electron’s spin angular momentum and that of the nucleus. This additional structure is known as the hyperfine structure, and is readily calculable in hydrogen utilizing the 1/2-integer spins of the electron and proton.

Figure 2: The expected energy levels in the antimatter version of hydrogen, an antiproton with an orbiting positron. Increased splitting on the x-axis are shown as a function of external magnetic field strength, a phenomena well-known in hydrogen (and thus predicted in antihydrogen) as the Zeeman Effect. The hyperfine splitting, due to the interaction between the positron and antiproton spin alignment are also shown by the arrows in the kets, respectively.

From the predictions of QED, one would expect antihydrogen to show precisely this same structure. Amazingly (or perhaps exactly as one would expect?) the average measurement of the antihydrogen transition frequencies agree with those in hydrogen to 16 ppb (parts per billion) – an observation that solidly keeps CPT invariance in rule but also opens up a new world of precision measurement of modern foundational physics. Similarly, with consideration to the Zeeman and hyperfine interactions, the splitting between 2P_{1/2} - 2P_{3/2} is found to be consistent with the CPT invariance of QED up to a level of 2 percent, and the identity of the Lamb shift (2S_{1/2} - 2P_{1/2}) up to 11 percent. With advancements in antiproton production and laser inducement of energy transitions, such tests provide unprecedented insight into the structure of antihydrogen. The presence of an antiproton and more accurate spectroscopy may even help in answering the unsolved question in physics: the size of the proton!

Figure 3: Transition frequencies observed in antihydrogen for the 1S-2P states (with various spin polarizations) compared with the theoretical expectation in hydrogen. The error bars are shown to 1 standard deviation.

References

  1. A Youtube link to how the ALPHA experiment acquires antihydrogen and measures excitations of anti-atoms: http://alpha.web.cern.ch/howalphaworks
  2. A picture of my aunty’s lasagne: https://imgur.com/a/2ffR4C3
  3. A reminder of what that fancy notation for labeling spin states means: https://quantummechanics.ucsd.edu/ph130a/130_notes/node315.html
  4. Details of the 1) Zeeman effect in atomic structure and 2) Lamb shift, discovery and calculation: 1) https://en.wikipedia.org/wiki/Zeeman_effect 2) https://en.wikipedia.org/wiki/Lamb_shift
  5. Hyperfine structure (great to be familiar with, and even more interesting to calculate in senior physics years): https://en.wikipedia.org/wiki/Hyperfine_structure
  6. Interested about why the size of the proton seems like such a challenge to figure out? See how the structure of hydrogen can be used to calculate it: https://en.wikipedia.org/wiki/Proton_radius_puzzle
The following two tabs change content below.

Latest posts by Matthew Talia (see all)

Leave a Reply

Your email address will not be published. Required fields are marked *