Representation and Discrimination in Particle Physics

Particle physics, like its overarching fields of physics and astronomy, has a diversity problem. Black students and researchers are severely underrepresented in our field, and many of them report feeling unsupported, unincluded, and undervalued throughout their careers. Although Black students enter into the field as undergraduates at comparable rates to white students, 8.5 times more white students than Black students enter PhD programs in physics¹. This suggests that the problem lies not in generating interest for the subject, but in the creation of an inclusive space for science.

This isn’t new information, although it has arguably not received the full attention it deserves, perhaps because everybody has not been on the same page. Before we go any further, let’s start with the big question: why is diversity in physics important? In an era where physics research is done increasingly collaboratively, the processes of cultivating talent across the social and racial spectrum is a strength that benefits all physicists. Having team members who can ask new questions or think differently about a problem leads to a wider variety of ideas and creativity in problem-solving approaches. It is advantageous to diversify a team, as the cohesiveness of the team often matters more in collaborative efforts than the talents of the individual members. While bringing on individuals from different backgrounds doesn’t guarantee the success of this endeavor, it does increase the probability of being able to tackle a problem using a variety of approaches. This is critical to doing good physics.

This naturally leads us to an analysis of the current state of diversity in physics. We need to recognize that physics is both subject to the underlying societal current of white supremacy and often perpetuates it through unconscious biases that manifest in bureaucratic structures, admissions and hiring policies, and harmful modes of unchecked communication. This is a roadblock to the accessibility of the field to the detriment of all physicists, as high attrition rates for a specific group suggests a loss of talent. But more than that, we should be striving to create departments and workplaces where all individuals and their ideas are values and welcomed. In order to work toward this, we need to: 

  1. Gather data: Why are Black students and researchers leaving the field at significantly higher rates? What is it like to be Black in physics?
  2. Introspect: What are we doing (or not doing) to support Black students in physics classrooms and departments? How have I contributed to this problem? How has my department contributed to this problem? How can I change these behaviors and advocate for others?
  3. Act: Often, well-meaning discussions remain just that — discussions. How can we create accountability to ensure that any agreed-upon action items are carried out? How can we track this progress over time?

Luckily, on the first point, there has been plenty of data that has already been gathered, although further studies are necessary to widen the scope of our understanding. Let’s look at the numbers. 

Black representation at the undergraduate level is the lowest in physics out of all the STEM fields, at roughly 3%. This number has decreased from 5% in 1999, despite the total number of bachelor’s degrees earned in physics more than doubling during that time² (note: 13% of the United States population is Black). While the number of bachelor’s degrees earned by Black students increased by 36% across the physical sciences from 1995 to 2015, the corresponding percentage solely for physics degrees increased by only 4%². This suggests that, while access has theoretically increased, retention has not. This tells a story of extra barriers for Black physics students that push them away from the field.

This is corroborated as we move up the academic ladder. At the graduate level, the total number of physics PhDs awarded to Black students has fluctuated between 10 and 20 from 1997 to 2012⁴. From 2010 to 2012, only 2% of physics doctoral students in the United States were Black out of a total of 843 total physics PhDs⁴. For Black women, the numbers are the most dire, having received only 22 PhDs in astronomy and 144 PhDs in physics or closely-related fields in the entire history of United States physics graduate programs. Meanwhile, the percentage of Black faculty members from 2004 to 2012 has stayed relatively consistent, hovering around 2%⁵. Black students and faculty alike often report being the sole Black person in their department. 

Where do these discrepancies come from? In January, the American Institute for Physics (AIP) released its TEAM-UP report summarizing what it found to be the main causes for Black underrepresentation in physics. According to the report, a main contribution to these numbers is whether students are immersed in a supportive environment². With this in mind, the above statistics are bolstered by anecdotal evidence and trends. Black students are less likely to report a sense of belonging in physics and more likely to report experiencing feelings of discouragement due to interactions with peers². They report lower levels of confidence and are less likely to view themselves as scientists². When it comes to faculty interaction, they are less likely to feel comfortable approaching professors and report fewer cases of feeling affirmed by faculty². Successful Black faculty describe gatekeeping in hiring processes, whereby groups of predominantly white male physicists are subject to implicit biases and are more likely to accept students or hire faculty who remind them of themselves³. 

It is worth noting that this data comes in light of the fact that diversity programs have been continually implemented during the time period of the study. Most of these programs focus on raising awareness of a diversity problem, scraping at the surface instead of digging deeper into the foundations of this issue. Clearly, this approach has fallen short, and we must shift our efforts. The majority of diversity initiatives focus on outlawing certain behaviors, which studies suggest tends to reaffirm biased viewpoints and lead to a decrease in overall diversity⁶. These programs are often viewed as a solution in their own right, although it is clear that simply informing a community that bias exists will not eradicate it. Instead, a more comprehensive approach, geared toward social accountability and increased spaces for voluntary learning and discussion, might garner better results. 

On June 10th, a team of leading particle physicists around the world published an open letter calling for a strike, for Black physicists to take a much-needed break from emotional heavy-lifting and non-Black physicists to dive into the self-reflection and conversation that is necessary for such a shift. The authors of the letter stressed, “Importantly, we are not calling for more diversity and inclusion talks and seminars. We are not asking people to sit through another training about implicit bias. We are calling for every member of the community to commit to taking actions that will change the material circumstances of how Black lives are lived to work toward ending the white supremacy that not only snuffs out Black physicist dreams but destroys whole Black lives.” 

“…We are calling for every member of the community to commit to taking actions that will change the material circumstances of how Black lives are lived — to work toward ending the white supremacy that not only snuffs out Black physicist dreams but destroys whole Black lives.” -Strike for Black Lives

Black academics, including many physicists, took to Twitter to detail their experiences under the hashtag #Blackintheivory. These stories painted a poignant picture of discrimination: being told that an acceptance to a prestigious program was only because “there were no Black women in physics,” being required to show ID before entering the physics building on campus, being told to “keep your head down” in response to complaints of discrimination, and getting incredulous looks from professors in response to requests for letters of recommendation. Microaggressions — brief and commonplace derisions, derogatory terms, or insults toward a group of people — such as these are often described as being poked repeatedly. At first, it’s annoying but tolerable, but over time it becomes increasingly unbearable. We are forcing Black students and faculty to constantly explain themselves, justify their presence, and prove themselves far more than any other group. While we all deal with the physics problem sets, experiments, and papers that are immediately in front of us, we need to recognize the further pressures that exist for Black students and faculty. It is much more difficult to focus on a physics problem when your society or department questions your right to be where you are. In the hierarchy of needs, it’s obvious which comes first. 

Physicists, I’ve observed, are especially proud of the field they study. And rightfully so — we tackle some of the deepest, most fundamental questions the universe has to offer. Yet this can breed a culture of arrogance and “lone genius” stereotypes, with brilliant idolized individuals often being white older males. In an age of physics that is increasingly reliant upon large collaborations such as CERN and LIGO, this is not only inaccurate but actively harmful. The vast majority of research is done in teams, and creating a space where team members can feel comfortable is paramount to its success. Often, we can put on a show of being bastions of intellectual superiority, which only pushes away students who are not as confident in their abilities or who look around the room and see nobody else like them in it.

Further, some academics use this proclaimed superiority to argue their way around any issues of diversity and inclusion, choosing to see the data (such as GPA or test scores) without considering the context. Physicists tend to tackle problems in an inherently academic, systematic fashion. We often remove ourselves from consideration because we want physics to stick to a scientific method free from bias on behalf of the experimenter. Yet physics, as a human activity undertaken by groups of individuals from a society, cannot be fully separated from the society in which it is practiced. We need to consider: Who determines allocation of funding? Who determines which students are admitted, or which faculty are hired? 

The TEAM-UP recommendations for increasing Black representation and cultivating a more welcoming environment in physics.

In order to fully transform the systems that leave Black students and faculty in physics underrepresented, unsupported, and even blatantly pushed out of the field, we must do the internal work as individuals and as departments to recognize harmful actions and put new systems in place to overturn these policies. With that in mind, what is the way forward? While there may be an increase in current momentum for action on this issue, it is critical to find a sustainable solution. This requires having difficult conversations and building accountability in the long term by creating or joining a working group within a department focused on equity, diversity, and inclusion (EDI) efforts. These types of fundamental changes are not possible without more widespread involvement; often, the burden of changing the system often falls on members of minority groups. The TEAM-UP report published several recommendations, centered on several categories including the creation of a resource guide, re-evaluating harassment response, and collecting data in an ongoing fashion. Further, Black scientists have long urged for the following actions⁷:

  1. The creation of opportunities for discussion amongst colleagues on these issues. This could be accomplished through working groups or reading groups within departments. The key is having a space solely focused on learning more deeply about EDI.
  2. Commitments to bold hiring practices, including cluster hiring. This occurs when multiple Black faculty members are hired at once, in order to decrease the isolation that occurs from being the sole Black member of a department. 
  3. The creation of a welcoming environment. This one is trickier, given that the phrase “welcoming environment” means something different to different people. An easier way to get a feel for this is by collecting data within a department, of both satisfaction and any personal stories or comments students or faculty would like to report. This also requires an examination of microaggressions and general attitudes toward Black members of a department, as an invite to the table could also be a case of tokenization. 
  4. A commitment to transparency. Research has shown that needing to explain hiring decisions to a group leads to a decrease in bias⁶. 

While this is by no means a comprehensive list, there are concrete places for all of us to start. 

References:

  1. https://physicstoday.scitation.org/doi/10.1063/PT.3.3536
  2. https://www.aip.org/sites/default/files/aipcorp/files/teamup-full-report.pdf
  3. https://www.insidehighered.com/advice/2018/03/09/mentors-and-role-models-can-attract-minority-students-fields-where-they-may-not
  4. https://www.aps.org/careers/statistics/upload/trends-phd0214.pdf
  5. https://www.aip.org/sites/default/files/statistics/faculty/africanhisp-fac-pa-12.pdf
  6. https://hbr.org/2016/07/why-diversity-programs-fail 
  7. https://www.nature.com/articles/d41586-020-01883-8
The following two tabs change content below.

Amara McCune

Amara McCune is a PhD student in theoretical physics at UC Santa Barbara focusing on phenomenology. She has bachelor’s degrees in physics and mathematics from Stanford University, where she completed research projects in AMO, cosmology, and spent a summer at CERN as part of the University of Michigan REU program. Her current projects focus on parity solutions to the strong CP problem, and she is generally interested in cosmological applications to beyond the Standard Model (BSM) physics, including dark matter, the CMB, and inflation. She is passionate about both teaching and outreach and spent part of this past summer volunteering as a teaching fellow for the Mongolian Young Scholars Program (MYSP) in Ulaanbaatar.

Leave a Reply

Your email address will not be published. Required fields are marked *