Moriond 2023 Recap

Every year since 1966,  particle physicists have gathered in the Alps to unveil and discuss their most important results of the year (and to ski). This year I had the privilege to attend the Moriond QCD session so I thought I would post a recap here. It was a packed agenda spanning 6 days of talks, and featured a lot of great results over many different areas of particle physics, so I’ll have to stick to the highlights here.

FASER Observes First Collider Neutrinos

Perhaps the most exciting result of Moriond came from the FASER experiment, a small detector recently installed in the LHC tunnel downstream from the ATLAS collision point. They announced the first ever observation of neutrinos produced in a collider. Neutrinos are produced all the time in LHC collisions, but because they very rarely interact, and current experiments were not designed to look for them, no one had ever actually observed them in a detector until now. Based on data collected during collisions from last year, FASER observed 153 candidate neutrino events, with a negligible amount of predicted backgrounds; an unmistakable observation.

Black image showing colorful tracks left by particles produced in a neutrino interaction
A neutrino candidate in the FASER emulsion detector. Source

This first observation opens the door for studying the copious high energy neutrinos produced in colliders, which sit in an energy range currently unprobed by other neutrino experiments. The FASER experiment is still very new, so expect more exciting results from them as they continue to analyze their data. A first search for dark photons was also released which should continue to improve with more luminosity. On the neutrino side, they have yet to release full results based on data from their emulsion detector which will allow them to study electron and tau neutrinos in addition to the muon neutrinos this first result is based on.

New ATLAS and CMS Results

The biggest result from the general purpose LHC experiments was ATLAS and CMS both announcing that they have observed the simultaneous production of 4 top quarks. This is one of the rarest Standard Model processes ever observed, occurring a thousand times less frequently than a Higgs being produced. Now that it has been observed the two experiments will use Run-3 data to study the process in more detail in order to look for signs of new physics.

Event displays from ATLAS and CMS showing the signature of 4 top events in their respective detectors
Candidate 4 top events from ATLAS (left) and CMS (right).

ATLAS also unveiled an updated measurement of the mass of the W boson. Since CDF announced its measurement last year, and found a value in tension with the Standard Model at ~7-sigma, further W mass measurements have become very important. This ATLAS result was actually a reanalysis of their previous measurement, with improved PDF’s and statistical methods. Though still not as precise as the CDF measurement, these improvements shrunk their errors slightly (from 19 to 16 MeV).  The ATLAS measurement reports a value of the W mass in very good agreement with the Standard Model, and approximately 4-sigma in tension with the CDF value. These measurements are very complex, and work is going to be needed to clarify the situation.

CMS had an intriguing excess (2.8-sigma global) in a search for a Higgs-like particle decaying into an electron and muon. This kind of ‘flavor violating’ decay would be a clear indication of physics beyond the Standard Model. Unfortunately it does not seem like ATLAS has any similar excess in their data.

Status of Flavor Anomalies

At the end of 2022, LHCb announced that the golden channel of the flavor anomalies, the R(K) anomaly, had gone away upon further analysis. Many of the flavor physics talks at Moriond seemed to be dealing with this aftermath.

Of the remaining flavor anomalies, R(D), a ratio describing the decay rates of B mesons in final states with D mesons and taus versus D mesons plus muons or electrons, has still been attracting interest. LHCb unveiled a new measurement that focused on hadronically taus and found a value that agreed with the Standard Model prediction. However this new measurement had larger error bars than others so it only brought down the world average slightly. The deviation currently sits at around 3-sigma.

A summary plot showing all the measurements of R(D) and R(D*). The newest LHCb measurement is shown in the red band / error bar on the left. The world average still shows a 3-sigma deviation to the SM prediction

An interesting theory talk pointed out that essentially any new physics which would produce a deviation in R(D) should also produce a deviation in another lepton flavor ratio, R(Λc), because it features the same b->clv transition. However LHCb’s recent measurement of R(Λc) actually found a small deviation in the opposite direction as R(D). The two results are only incompatible at the ~1.5-sigma level for now, but it’s something to continue to keep an eye on if you are following the flavor anomaly saga.

It was nice to see that the newish Belle II experiment is now producing some very nice physics results. The highlight of which was a world-best measurement of the mass of the tau lepton. Look out for more nice Belle II results as they ramp up their luminosity, and hopefully they can weigh in on the R(D) anomaly soon.

A fit to the invariant mass the visible decay products of the tau lepton, used to determine its intrinsic mass. An impressive show of precision from Belle II

Theory Pushes for Precision

The focus of much of the theory talks was about trying to advance our precision in predictions of standard model physics. This ‘bread and butter’ physics is sometimes overlooked in scientific press, but is an absolutely crucial part of the particle physics ecosystem. As experiments reach better and better precision, improved theory calculations are required to accurately model backgrounds, predict signals, and have precise standard model predictions to compare to so that deviations can be spotted. Nice results in this area included evidence for an intrinsic amount of charm quarks inside the proton from the NNPDF collaboration, very precise extraction of CKM matrix elements by using lattice QCD, and two different proposals for dealing with tricky aspects regarding the ‘flavor’ of QCD jets.

Final Thoughts

Those were all the results that stuck out to me. But this is of course a very biased sampling! I am not qualified enough to point out the highlights of the heavy ion sessions or much of the theory presentations. For a more comprehensive overview, I recommend checking out the slides for the excellent experimental and theoretical summary talks. Additionally there was the Moriond Electroweak conference that happened the week before the QCD one, which covers many of the same topics but includes neutrino physics results and dark matter direct detection. Overall it was a very enjoyable conference and really showcased the vibrancy of the field!

LHCb’s Xmas Letdown : The R(K) Anomaly Fades Away

Just before the 2022 holiday season LHCb announced it was giving the particle physics community a highly anticipated holiday present : an updated measurement of the lepton flavor universality ratio R(K).  Unfortunately when the wrapping paper was removed and the measurement revealed,  the entire particle physics community let out a collective groan. It was not shiny new-physics-toy we had all hoped for, but another pair of standard-model-socks.

The particle physics community is by now very used to standard-model-socks, receiving hundreds of pairs each year from various experiments all over the world. But this time there had be reasons to hope for more. Previous measurements of R(K) from LHCb had been showing evidence of a violation one of the standard model’s predictions (lepton flavor universality), making this triumph of the standard model sting much worse than most.

R(K) is the ratio of how often a B-meson (a bound state of a b-quark) decays into final states with a kaon (a bound state of an s-quark) plus two electrons vs final states with a kaon plus two muons. In the standard model there is a (somewhat mysterious) principle called lepton flavor universality which means that muons are just heavier versions of electrons. This principle implies B-mesons decays should produce electrons and muons equally and R(K) should be one. 

But previous measurements from LHCb had found R(K) to be less than one, with around 3σ of statistical evidence. Other LHCb measurements of B-mesons decays had also been showing similar hints of lepton flavor universality violation. This consistent pattern of deviations had not yet reached the significance required to claim a discovery. But it had led a good amount of physicists to become #cautiouslyexcited that there may be a new particle around, possibly interacting preferentially with muons and b-quarks, that was causing the deviation. Several hundred papers were written outlining possibilities of what particles could cause these deviations, checking whether their existence was constrained by other measurements, and suggesting additional measurements and experiments that could rule out or discover the various possibilities. 

This had all led to a considerable amount of anticipation for these updated results from LHCb. They were slated to be their final word on the anomaly using their full dataset collected during LHC’s 2nd running period of 2016-2018. Unfortunately what LHCb had discovered in this latest analysis was that they had made a mistake in their previous measurements.

There were additional backgrounds in their electron signal region which had not been previously accounted for. These backgrounds came from decays of B-mesons into pions or kaons which can be mistakenly identified as electrons. Backgrounds from mis-identification are always difficult to model with simulation, and because they are also coming from decays of B-mesons they produce similar peaks in their data as the sought after signal. Both these factors combined to make it hard to spot they were missing. Without accounting for these backgrounds it made it seem like there was more electron signal being produced than expected, leading to R(K) being below one. In this latest measurement LHCb found a way to estimate these backgrounds using other parts of their data. Once they were accounted for, the measurements of R(K) no longer showed any deviations, all agreed with one within uncertainties.

Plots showing two of the signal regions of for the electron channel measurements. The previously unaccounted for backgrounds are shown in lime green and the measured signal contribution is shown in red. These backgrounds have a peak overlapping with that of the signal, making it hard to spot that they were missing.

It is important to mention here that data analysis in particle physics is hard. As we attempt to test the limits of the standard model we are often stretching the limits of our experimental capabilities and mistakes do happen. It is commendable that the LHCb collaboration was able to find this issue and correct the record for the rest of the community. Still, some may be a tad frustrated that the checks which were used to find these missing backgrounds were not done earlier given the high profile nature of these measurements (their previous result claimed ‘evidence’ of new physics and was published in Nature).

Though the R(K) anomaly has faded away, the related set of anomalies that were thought to be part of a coherent picture (including another leptonic branching ratio R(D) and an angular analysis of the same B meson decay in to muons) still remain for now. Though most of these additional anomalies involve significantly larger uncertainties on the Standard Model predictions than R(K) did, and are therefore less ‘clean’ indications of new physics.

Besides these ‘flavor anomalies’ other hints of new physics remain, including measurements of the muon’s magnetic moment, the measured mass of the W boson and others. Though certainly none of these are slam dunk, as they each causes for skepticism.

So as we begin 2023, with a great deal of fresh LHC data expected to be delivered, particle physicists once again begin our seemingly Sisyphean task : to find evidence physics beyond the standard model. We know its out there, but nature is under no obligation to make it easy for us.

Paper: Test of lepton universality in b→sℓ+ℓ− decays (arXiv link)

Authors: LHCb Collaboration

Read More:

Excellent twitter thread summarizing the history of the R(K) saga

A related, still discrepant, flavor anomaly from LHCb

The W Mass Anomaly

LHCb’s Flavor Mystery Deepens

Title: Measurement of CP -averaged observables in the B0→ K∗0µ+µ− decay

Authors: LHCb Collaboration

Refference: https://arxiv.org/abs/2003.04831

In the Standard Model, matter is organized in 3 generations; 3 copies of the same family of particles but with sequentially heavier masses. Though the Standard Model can successfully describe this structure, it offers no insight into why nature should be this way. Many believe that a more fundamental theory of nature would better explain where this structure comes from. A natural way to look for clues to this deeper origin is to check whether these different ‘flavors’ of particles really behave in exactly the same ways, or if there are subtle differences that may hint at their origin.

The LHCb experiment is designed to probe these types of questions. And in recent years, they have seen a series of anomalies, tensions between data and Standard Model predictions, that may be indicating the presence of new particles which talk to the different generations. In the Standard Model, the different generations can only interact with each other through the W boson, which means that quarks with the same charge can only interact through more complicated processes like those described by ‘penguin diagrams’.

The so called ‘penguin diagrams’ describe how rare decays like bottom quark → strange quark can happen in the Standard Model. The name comes from both their shape and a famous bar bet. Who says physicists don’t have a sense of humor?

These interactions typically have quite small rates in the Standard Model, meaning that the rate of these processes can be quite sensitive to new particles, even if they are very heavy or interact very weakly with the SM ones. This means that studying these sort of flavor decays is a promising avenue to search for new physics.

In a press conference last month, LHCb unveiled a new measurement of the angular distribution of the rare B0→K*0μ+μ– decay. The interesting part of this process involves a b → s transition (a bottom quark decaying into a strange quark), where number of anomalies have been seen in recent years.

Feynman diagrams of the decay being studied. A B meson (composed of a bottom and a down quark) decays into a Kaon (composed of a strange quark and a down quark) and a pair of muons. Because this decay is very rare in the Standard Mode (left diagram) it could be a good place to look for the effects of new particles (right diagram). Diagrams taken from here

Rather just measuring the total rate of this decay, this analysis focuses on measuring the angular distribution of the decay products. They also perform this mesaurement in different bins of ‘q^2’, the dimuon pair’s invariant mass. These choices allow the measurement to be less sensitive to uncertainties in the Standard Model prediction due to difficult to compute hadronic effects. This also allows the possibility of better characterizing the nature of whatever particle may be causing a deviation.

The kinematics of decay are fully described by 3 angles between the final state particles and q^2. Based on knowing the spins and polarizations of each of the particles, they can fully describe the angular distributions in terms of 8 parameters. They also have to account for the angular distribution of background events, and distortions of the true angular distribution that are caused by the detector. Once all such effects are accounted for, they are able to fit the full angular distribution in each q^2 bin to extract the angular coefficients in that bin.

This measurement is an update to their 2015 result, now with twice as much data. The previous result saw an intriguing tension with the SM at the level of roughly 3 standard deviations. The new result agrees well with the previous one, and mildly increases the tension to the level of 3.4 standard deviations.

LHCb’s measurement of P’5, an observable describing one part of the angular distribution of the decay. The orange boxes show the SM prediction of this value and the red, blue and black point shows LHCb’s most recent measurement (a combination of its ‘Run 1’ measurement and the more recent 2016 data). The grey regions are excluded from the measurement because they have large backgrounds from the decays of other mesons.

This latest result is even more interesting given that LHCb has seen an anomaly in another measurement (the R_k anomaly) involving the same b → s transition. This had led some to speculate that both effects could be caused by a single new particle. The most popular idea is a so-called ‘leptoquark’ that only interacts with some of the flavors.

LHCb is already hard at work on updating this measurement with more recent data from 2017 and 2018, which should once again double the number of events. Updates to the R_k measurement with new data are also hotly anticipated. The Belle II experiment has also recent started taking data and should be able to perform similar measurements. So we will have to wait and see if this anomaly is just a statistical fluke, or our first window into physics beyond the Standard Model!

Read More:

Symmetry Magazine “The mystery of particle generations”

Cern Courier “Anomalies persist in flavour-changing B decays”

Lecture Notes “Introduction to Flavor Physcis”

Muon to electron conversion

Presenting: Section 3.2 of “Charged Lepton Flavor Violation: An Experimenter’s Guide”
Authors: R. Bernstein, P. Cooper
Reference1307.5787 (Phys. Rept. 532 (2013) 27)

Not all searches for new physics involve colliding protons at the the highest human-made energies. An alternate approach is to look for deviations in ultra-rare events at low energies. These deviations may be the quantum footprints of new, much heavier particles. In this bite, we’ll focus on the decay of a muon to an electron in the presence of a heavy atom.

Muons decay
Muons conversion into an electron in the presence of an atom, aluminum.

The muon is a heavy version of the electron.There  are a few properties that make muons nice systems for precision measurements:

  1. They’re easy to produce. When you smash protons into a dense target, like tungsten, you get lots of light hadrons—among them, the charged pions. These charged pions decay into muons, which one can then collect by bending their trajectories with magnetic fields. (Puzzle: why don’t pions decay into electrons? Answer below.)
  2. They can replace electrons in atoms.  If you point this beam of muons into a target, then some of the muons will replace electrons in the target’s atoms. This is very nice because these “muonic atoms” are described by non-relativistic quantum mechanics with the electron mass replaced with ~100 MeV. (Muonic hydrogen was previous mentioned in this bite on the proton radius problem.)
  3. They decay, and the decay products always include an electron that can be detected.  In vacuum it will decay into an electron and two neutrinos through the weak force, analogous to beta decay.
  4. These decays are sensitive to virtual effects. You don’t need to directly create a new particle in order to see its effects. Potential new particles are constrained to be very heavy to explain their non-observation at the LHC. However, even these heavy particles can leave an  imprint on muon decay through ‘virtual effects’ according (roughly) to the Heisenberg uncertainty principle: you can quantum mechanically violate energy conservation, but only for very short times.

Reach of muon conversion experiments from 1303.4097. The y axis is the energy scale that can be probed, the x axis parameterizes how new physics is spread between different CLFV parameters.
Reach of muon conversion experiments from 1303.4097. The y axis is the energy scale that can be probed and the x axis parameterizes different ways that lepton flavor violation can appear in a theory.

One should be surprised that muon conversion is even possible. The process \mu \to e cannot occur in vacuum because it cannot simultaneously conserve energy and momentum. (Puzzle: why is this true? Answer below.) However, this process is allowed in the presence of a heavy nucleus that can absorb the additional momentum, as shown in the comic at the top of this post.

Muon  conversion experiments exploit this by forming muonic atoms in the 1state and waiting for the muon to convert into an electron which can then be detected. The upside is that all electrons from conversion have a fixed energy because they all come from the same initial state: 1s muonic aluminum at rest in the lab frame. This is in contrast with more common muon decay modes which involve two neutrinos and an electron; because this is a multibody final state, there is a smooth distribution of electron energies. This feature allows physicists to distinguish between the \mu \to e conversion versus the more frequent muon decay \mu \to e \nu_\mu \bar \nu_e in orbit or muon capture by the nucleus (similar to electron capture).

The Standard Model prediction for this rate is miniscule—it’s weighted by powers of the neutrino to the W boson mass ratio  (Puzzle: how does one see this? Answer below.). In fact, the current experimental bound on muon conversion comes from the Sindrum II experiment  looking at muonic gold which constrains the relative rate of muon conversion to muon capture by the gold nucleus to be less than 7 \times 10^{-13}. This, in turn, constrains models of new physics that predict some level of charged lepton flavor violation—that is, processes that change the flavor of a charged lepton, say going from muons to electrons.

The plot on the right shows the energy scales that are indirectly probed by upcoming muonic aluminum experiments: the Mu2e experiment at Fermilab and the COMET experiment at J-PARC. The blue lines show bounds from another rare muon decay: muons decaying into an electron and photon. The black solid lines show the reach for muon conversion in muonic aluminum. The dashed lines correspond to different experimental sensitivities (capture rates for conversion, branching ratios for decay with a photon). Note that the energy scales probed can reach 1-10 PeV—that’s 1000-10,000 TeV—much higher than the energy scales direclty probed by the LHC! In this way, flavor experiments and high energy experiments are complimentary searches for new physics.

These “next generation” muon conversion experiments are currently under construction and promise to push the intensity frontier in conjunction with the LHC’s energy frontier.

 

 

Solutions to exercises:

  1. Why do pions decay into muons and not electrons? [Note: this requires some background in undergraduate-level particle physics.] One might expect that if a charged pion can decay into a muon and a neutrino, then it should also go into an electron and a neutrino. In fact, the latter should dominate since there’s much more phase space. However, the matrix element requires a virtual W boson exchange and thus depends on an [axial] vector current. The only vector available from the pion system is its 4-momentum. By momentum conservation this is $p_\pi = p_\mu + p_\nu$. The lepton momenta then contract with Dirac matrices on the leptonic current to give a dominant piece proportional to the lepton mass. Thus the amplitude for charged pion decay into a muon is much larger than the amplitude for decay into an electron.
  2. Why can’t a muon decay into an electron in vacuum? The process \mu \to e cannot simultaneously conserve energy and momentum. This is simplest to see in the reference frame where the muon is at rest. Momentum conservation requires the electron to also be at rest. However, a particle has rest energy equal to its mass, but now there’s now way a muon at rest can pass on all of its energy to an electron at rest.
  3. Why is muon conversion in the Standard Model suppressed by the ration of the neutrino to W masses? This can be seen by drawing the Feynman diagram (fig below from 1401.6077). Flavor violation in the Standard Model requires a W boson. Because the W is much heavier than the muon, this must be virtual and appear only as an internal leg. Further, W‘s couple charged leptons to neutrinos, so there must also be a virtual neutrino. The evaluation of this diagram into an amplitude gives factors of the neutrino mass in the numerator (required for the fermion chirality flip) and the W mass in the denominator. For some details, see this post.
    Screen Shot 2015-03-05 at 4.08.58 PM

Further Reading:

  • 1205.2671: Fundamental Physics at the Intensity Frontier (section 3.2.2)
  • 1401.6077: Snowmass 2013 Report, Intensity Frontier chapter