Too Massive? New measurement of the W boson’s mass sparks intrigue

This is part one of our coverage of the CDF W mass result covering its implications. Read about the details of the measurement in a sister post here!

Last week the physics world was abuzz with the latest results from an experiment that stopped running a decade ago. Some were heralding this as the beginning of a breakthrough in fundamental physics, headlines read “Shock result in particle experiment could spark physics revolution” (BBC). So what exactly is all the fuss about?

The result itself is an ultra-precise measurement of the mass of the W boson. The W boson is one of the carriers of weak force and this measurement pegged its mass at 80,433 MeV with an uncertainty of 9 MeV. The excitement is coming because this value disagrees with the prediction from our current best theory of particle physics, the Standard Model. In theoretical structure of the Standard Model the masses of the gauge bosons are all interrelated. In the Standard Model the mass of the W boson can be computed based on the mass of the Z as well as few other parameters in the theory (like the weak mixing angle). In a first approximation (ie to the lowest order in perturbation theory), the mass of the W boson is equal to the mass of the Z boson times the cosine of the weak mixing angle. Based on other measurements that have been performed including the Z mass, the Higgs mass, the lifetime of muons and others, the Standard Model predicts that the mass of the W boson should be 80,357 (with an uncertainty of 6 MeV). So the two numbers disagree quite strongly, at the level of 7 standard deviations.

If the measurement and the Standard Model prediction are both correct, this would imply that there is some deficiency in the Standard Model; some new particle interacting with the W boson whose effects haven’t been unaccounted for. This would be welcome news to particle physicists, as we know that the Standard Model is an incomplete theory but have been lacking direct experimental confirmation of its deficiencies. The size of the discrepancy would also mean that whatever new particle was causing the deviation may also be directly detectable within our current or near future colliders.

If this discrepancy is real, exactly what new particles would this entail? Judging based on the 30+ (and counting) papers released on the subject in the last week, there are a good number of possibilities. Some examples include extra Higgs bosons, extra Z-like bosons, and vector-like fermions. It would take additional measurements and direct searches to pick out exactly what the culprit was. But it would hopefully give experimenters definite targets of particles to look for, which would go a long way in advancing the field.

But before everyone starts proclaiming the Standard Model dead and popping champagne bottles, its important to take stock of this new CDF measurement in the larger context. Measurements of the W mass are hard, that’s why it has taken the CDF collaboration over 10 years to publish this result since they stopped taking data. And although this measurement is the most precise one to date, several other W mass measurements have been performed by other experiments.

The Other Measurements

A plot summarizing the various W mass measurements performed to date
A summary of all the W mass measurements performed to date (black dots) with their uncertainties (blue bars) as compared to the the Standard Model prediction (yellow band). One can see that this new CDF result is in tension with previous measurements. (source)

Previous measurements of the W mass have come from experiments at the Large Electron-Positron collider (LEP), another experiment at the Tevatron (D0) and experiments at the LHC (ATLAS and LHCb). Though none of these were as precise as this new CDF result, they had been painting a consistent picture of a value in agreement with the Standard Model prediction. If you take the average of these other measurements, their value differs from the CDF measurement the level about 4 standard deviations, which is quite significant. This discrepancy seems large enough that it is unlikely to arise from purely random fluctuation, and likely means that either some uncertainties have been underestimated or something has been overlooked in either the previous measurements or this new one.

What one would like are additional, independent, high precision measurements that could either confirm the CDF value or the average value of the previous measurements. Unfortunately it is unlikely that such a measurement will come in the near future. The only currently running facility capable of such a measurement is the LHC, but it will be difficult for experiments at the LHC to rival the precision of this CDF one.

W mass measurements are somewhat harder at the LHC than the Tevatron for a few reasons. First of all the LHC is proton-proton collider, while the Tevatron was a proton-antiproton collider, and the LHC also operates at a higher collision energy than the Tevatron. Both differences cause W bosons produced at the LHC to have more momentum than those produced at the Tevatron. Modeling of the W boson’s momentum distribution can be a significant uncertainty of its mass measurement, and the extra momentum of W’s at the LHC makes this a larger effect. Additionally, the LHC has a higher collision rate, meaning that each time a W boson is produced there are actually tens of other collisions laid on top (rather than only a few other collisions like at the Tevatron). These extra collisions are called pileup and can make it harder to perform precision measurements like these. In particular for the W mass measurement, the neutrino’s momentum has to be inferred from the momentum imbalance in the event, and this becomes harder when there are many collisions on top of each other. Of course W mass measurements are possible at the LHC, as evidenced by ATLAS and LHCb’s already published results. And we can look forward to improved results from ATLAS and LHCb as well as a first result from CMS. But it may be very difficult for them to reach the precision of this CDF result.

A histogram of the transverse mass of the W from the ATLAS result. Showing how 50 MeV shifts in the W mass change the spectrum by extremely small amounts (a few tenths of a percent).
A plot of the transverse mass (one of the variables used in a measurement) of the W from the ATLAS measurement. The red and yellow lines show how little the distribution changes if the W mass changes by 50 MeV, which is around two and half times the uncertainty of the ATLAS result. These shifts change the distribution by only a few tenths of a percent, illustrating the difficulty involved. (source)

The Future

A future electron positron collider would be able to measure the W mass extremely precisely by using an alternate method. Instead of looking at the W’s decay, the mass could be measured through its production, by scanning the energy of the electron beams very close to the threshold to produce two W bosons. This method should offer precision significantly better than even this CDF result. However any measurement from a possible future electron positron collider won’t come for at least a decade.

In the coming months, expect this new CDF measurement to receive a lot buzz. Experimentalists will be poring over the details trying to figure out why it is in tension with previous measurements and working hard to produce new measurements from LHC data. Meanwhile theorists will write a bunch of papers detailing the possibilities of what new particles could explain the discrepancy and if there is a connection to other outstanding anomalies (like the muon g-2). But the big question of whether we are seeing the first real crack in the Standard Model or there is some mistake in one or more of the measurements is unlikely to be answered for a while.

If you want to learn about how the measurement actually works, check out this sister post!

Read More:

Cern Courier “CDF sets W mass against the Standard Model

Blog post on the CDF result from an (ATLAS) expert on W mass measurements “[Have we] finally found new physics with the latest W boson mass measurement?”

PDG Review “Electroweak Model and Constraints on New Physics

Measuring the Tau’s g-2 Too

Title : New physics and tau g2 using LHC heavy ion collisions

Authors: Lydia Beresford and Jesse Liu

Reference: https://arxiv.org/abs/1908.05180

Since April, particle physics has been going crazy with excitement over the recent announcement of the muon g-2 measurement which may be our first laboratory hint of physics beyond the Standard Model. The paper with the new measurement has racked up over 100 citations in the last month. Most of these papers are theorists proposing various models to try an explain the (controversial) discrepancy between the measured value of the muon’s magnetic moment and the Standard Model prediction. The sheer number of papers shows there are many many models that can explain the anomaly. So if the discrepancy is real,  we are going to need new measurements to whittle down the possibilities.

Given that the current deviation is in the magnetic moment of the muon, one very natural place to look next would be the magnetic moment of the tau lepton. The tau, like the muon, is a heavier cousin of the electron. It is the heaviest lepton, coming in at 1.78 GeV, around 17 times heavier than the muon. In many models of new physics that explain the muon anomaly the shift in the magnetic moment of a lepton is proportional to the mass of the lepton squared. This would explain why we are a seeing a discrepancy in the muon’s magnetic moment and not the electron (though there is a actually currently a small hint of a deviation for the electron too). This means the tau should be 280 times more sensitive than the muon to the new particles in these models. The trouble is that the tau has a much shorter lifetime than the muon, decaying away in just 10-13 seconds. This means that the techniques used to measure the muons magnetic moment, based on magnetic storage rings, won’t work for taus. 

Thats where this new paper comes in. It details a new technique to try and measure the tau’s magnetic moment using heavy ion collisions at the LHC. The technique is based on light-light collisions (previously covered on Particle Bites) where two nuclei emit photons that then interact to produce new particles. Though in classical electromagnetism light doesn’t interact with itself (the beam from two spotlights pass right through each other) at very high energies each photon can split into new particles, like a pair of tau leptons and then those particles can interact. Though the LHC normally collides protons, it also has runs colliding heavier nuclei like lead as well. Lead nuclei have more charge than protons so they emit high energy photons more often than protons and lead to more light-light collisions than protons. 

Light-light collisions which produce tau leptons provide a nice environment to study the interaction of the tau with the photon. A particles magnetic properties are determined by its interaction with photons so by studying these collisions you can measure the tau’s magnetic moment. 

However studying this process is be easier said than done. These light-light collisions are “Ultra Peripheral” because the lead nuclei are not colliding head on, and so the taus produced generally don’t have a large amount of momentum away from the beamline. This can make them hard to reconstruct in detectors which have been designed to measure particles from head on collisions which typically have much more momentum. Taus can decay in several different ways, but always produce at least 1 neutrino which will not be detected by the LHC experiments further reducing the amount of detectable momentum and meaning some information about the collision will lost. 

However one nice thing about these events is that they should be quite clean in the detector. Because the lead nuclei remain intact after emitting the photon, the taus won’t come along with the bunch of additional particles you often get in head on collisions. The level of background processes that could mimic this signal also seems to be relatively minimal. So if the experimental collaborations spend some effort in trying to optimize their reconstruction of low momentum taus, it seems very possible to perform a measurement like this in the near future at the LHC. 

The authors of this paper estimate that such a measurement with a the currently available amount of lead-lead collision data would already supersede the previous best measurement of the taus anomalous magnetic moment and further improvements could go much farther. Though the measurement of the tau’s magnetic moment would still be far less precise than that of the muon and electron, it could still reveal deviations from the Standard Model in realistic models of new physics. So given the recent discrepancy with the muon, the tau will be an exciting place to look next!

Read More:

An Anomalous Anomaly: The New Fermilab Muon g-2 Results

When light and light collide

Another Intriguing Hint of New Physics Involving Leptons

The XENON1T Excess : The Newest Craze in Particle Physics

Paper: Observation of Excess Electronic Recoil Events in XENON1T

Authors: XENON1T Collaboration

Recently the particle physics world has been abuzz with a new result from the XENON1T experiment who may have seen a revolutionary signal. XENON1T is one of the world’s most sensitive dark matter experiments. The experiment consists of a huge tank of Xenon placed deep underground in the Gran Sasso mine in Italy. It is a ‘direct-detection’ experiment, hunting for very rare signals of dark matter particles from space interacting with their detector. It was originally designed to look for WIMP’s, Weakly Interacting Massive Particles, who used to be everyone’s favorite candidate for dark matter. However, given recent null results by WIMP-hunting  direct-detection experiments, and collider experiments at the LHC, physicists have started to broaden their dark matter horizons. Experiments like XENON1T, who were designed to look for heavy WIMP’s colliding off of Xenon nuclei have realized that they can also be very sensitive to much lighter particles by looking for electron recoils. New particles that are much lighter than traditional WIMP’s would not leave much of an impact on large Xenon nuclei, but they can leave a signal in the detector if they instead scatter off of the electrons around those nuclei. These electron recoils can be identified by the ionization and scintillation signals they leave in the detector, allowing them to be distinguished from nuclear recoils.

In this recent result, the XENON1T collaboration searched for these electron recoils in the energy range of 1-200 keV with unprecedented sensitivity.  Their extraordinary sensitivity is due to its exquisite control over backgrounds and extremely low energy threshold for detection. Rather than just being impressed, what has gotten many physicists excited is that the latest data shows an excess of events above expected backgrounds in the 1-7 keV region. The statistical significance of the excess is 3.5 sigma, which in particle physics is enough to claim ‘evidence’ of an anomaly but short of the typical 5-sigma required to claim discovery.

The XENON1T data that has caused recent excitement. The ‘excess’ is the spike in the data (black points) above the background model (red line) in the 1-7 keV region. The significance of the excess is around 3.5 sigma.

So what might this excess mean? The first, and least fun answer, is nothing. 3.5 sigma is not enough evidence to claim discovery, and those well versed in particle physics history know that there have been numerous excesses with similar significances have faded away with more data. Still it is definitely an intriguing signal, and worthy of further investigation.

The pessimistic explanation is that it is due to some systematic effect or background not yet modeled by the XENON1T collaboration. Many have pointed out that one should be skeptical of signals that appear right at the edge of an experiments energy detection threshold. The so called ‘efficiency turn on’, the function that describes how well an experiment can reconstruct signals right at the edge of detection, can be difficult to model. However, there are good reasons to believe this is not the case here. First of all the events of interest are actually located in the flat part of their efficiency curve (note the background line is flat below the excess), and the excess rises above this flat background. So to explain this excess their efficiency would have to somehow be better at low energies than high energies, which seems very unlikely. Or there would have to be a very strange unaccounted for bias where some higher energy events were mis-reconstructed at lower energies. These explanations seem even more implausible given that the collaboration performed an electron reconstruction calibration using the radioactive decays of Radon-220 over exactly this energy range and were able to model the turn on and detection efficiency very well.

Results of a calibration done to radioactive decays of Radon-220. One can see that data in the efficiency turn on (right around 2 keV) is modeled quite well and no excesses are seen.

However the possibility of a novel Standard Model background is much more plausible. The XENON collaboration raises the possibility that the excess is due to a previously unobserved background from tritium β-decays. Tritium decays to Helium-3 and an electron and a neutrino with a half-life of around 12 years. The energy released in this decay is 18.6 keV, giving the electron having an average energy of a few keV. The expected energy spectrum of this decay matches the observed excess quite well. Additionally, the amount of contamination needed to explain the signal is exceedingly small. Around 100 parts-per-billion of H2 would lead to enough tritium to explain the signal, which translates to just 3 tritium atoms per kilogram of liquid Xenon. The collaboration tries their best to investigate this possibility, but they neither rule out or confirm such a small amount of tritium contamination. However, other similar contaminants, like diatomic oxygen have been confirmed to be below this level by 2 orders of magnitude, so it is not impossible that they were able to avoid this small amount of contamination.

So while many are placing their money on the tritium explanation, there is the exciting possibility remains that this is our first direct evidence of physics Beyond the Standard Model (BSM)! So if the signal really is a new particle or interaction what would it be? Currently it it is quite hard to pin down exactly based on the data. The analysis was specifically searching for two signals that would have shown up in exactly this energy range: axions produced in the sun, and neutrinos produced in the sun interacting with electrons via a large (BSM) magnetic moment. Both of these models provide good fits to the signal shape, with the axion explanation being slightly preferred. However since this result has been released, many have pointed out that these models would actually be in conflict with constraints from astrophysical measurements. In particular, the axion model they searched for would have given stars an additional way to release energy, causing them to cool at a faster rate than in the Standard Model. The strength of interaction between axions and electrons needed to explain the XENON1T excess is incompatible with the observed rates of stellar cooling. There are similar astrophysical constraints on neutrino magnetic moments that also make it unlikely.

This has left door open for theorists to try to come up with new explanations for these excess events, or think of clever ways to alter existing models to avoid these constraints. And theorists are certainly seizing this opportunity! There are new explanations appearing on the arXiv every day, with no sign of stopping. In the roughly 2 weeks since the XENON1T announced their result and this post is being written, there have already been 50 follow up papers! Many of these explanations involve various models of dark matter with some additional twist, such as being heated up in the sun or being boosted to a higher energy in some other way.

A collage of different models trying to explain the XENON1T excess (center). Each plot is from a separate paper released in the first week and a half following the original announcement. Source

So while theorists are currently having their fun with this, the only way we will figure out the true cause of this this anomaly is with more data. The good news is that the XENON collaboration is already preparing for the XENONnT experiment that will serve as a follow to XENON1T. XENONnT will feature a larger active volume of Xenon and a lower background level, allowing them to potentially confirm this anomaly at the 5-sigma level with only a few months of data. If  the excess persists, more data would also allow them to better determine the shape of the signal; allowing them to possibly distinguish between the tritium shape and a potential new physics explanation. If real, other liquid Xenon experiments like LUX and PandaX should also be able to independently confirm the signal in the near future. The next few years should be a very exciting time for these dark matter experiments so stay tuned!

Read More:

Quanta Magazine Article “Dark Matter Experiment Finds Unexplained Signal”

Previous ParticleBites Post on Axion Searches

Blog Post “Hail the XENON Excess”