Paper Title: Observation of structure in the -pair mass spectrum
Authors: LHCb Collaboration
Reference: https://arxiv.org/pdf/2006.16957.pdf

The Announcement
The LHCb collaboration reports a 5-sigma resonance at 6.9 GeV, consistent with predictions of a fully-charmed tetraquark state.
The Background
One of the ways quarks interact with each other is the strong nuclear force. This force is unlike the electroweak or gravitational forces in that the interaction strength increases with the separation between quarks, until it sharply falls off at roughly m. We say that the strong force is “confined” due to this sharp drop off. It is also dissimilar to the other forces in that the Strong force is non-perturbative. For perturbation theory to work well, the more complex a Feynman diagram becomes, the less it should contribute to the process. In the strong interaction though, each successive diagram contributes more than the previous one. Despite these challenges, physicists have still made sense organizing the zoo of quarks and bound states that come from particle collisions.
The quark () model [1,2] classifies hadrons into Mesons (
) and Baryons (
or
). It also allows for the existence of exotic hadrons like the tetraquark (
) or pentaquark (
). The first evidence for an exotic hardon of this nature came in 2003 from the Belle Collaboration [1]. According to the LHCb collaboration, “all hadrons observed to date, including those of exotic nature, contain at most two heavy charm (
) or bottom (
) quarks, whereas many QCD-motivated phenomenological models also predict the existence of states consisting of four heavy quarks.” In this paper, the LHCb reports evidence of a
state, the first fully charmed tetraquark state.
The Method
Perhaps the simplest way to form a fully charmed tetraquark state, from now on, is to form two charmonium states (
) which then themselves form a bound state. This search focuses on pairs of charmonium that are produced from two separate interactions, as opposed to resonant production through a single interaction. This is advantageous because “the distribution of any di-
observable can be constructed using the kinematics from single
production.” In other words, independent
production reduces the amount of work it takes to construct observables.
Once is formed, the most useful decay it undergoes is into pairs of muons with about a 6% branching ratio [2]. To form
candidates, the di-muon invariant mass must be between
GeV. To form a di-
candidate, the
, all four muons are required to have originated from the same proton-proton collision point. This eliminates the possibility of associating two
s from two different proton collisions.
The Findings
When the dust settles, the LHCb finds a resonance at
MeV with a width of
MeV. This resonance is just above twice the
mass.
References
[1] – An model for strong interaction symmetry and its breaking.
[2] – A schematic model of baryons and mesons.
[3] – Observation of a narrow charmonium-like state in exclusive decays.
[4] – http://pdg.lbl.gov/2010/listings/rpp2010-list-J-psi-1S.pdf.
Adam Green
Latest posts by Adam Green (see all)
- Charmonium-onium: A fully charmed tetraquark - July 13, 2020
- A Charming Story - June 18, 2020
- Dark Matter Cookbook: Freeze-In - May 22, 2020