New detectors on the block

Article title: “Toward Machine Learning Optimization of Experimental Design”

Authors: MODE Collaboration

Reference: https://inspirehep.net/literature/1850892 (pdf)

In a previous post we wondered if (machine learning) algorithms can replace the entire simulation of detectors and reconstruction of particles. But meanwhile some experimentalists have gone one step further – and wondered if algorithms can design detectors.

Indeed, the MODE collaboration stands for Machine-learning Optimized Design of Experiments and in its first paper promises nothing less than that.

The idea here is that the choice of characteristics that an experiment can have is vast (think number of units, materials, geometry, dimensions and so on), but its ultimate goal can still be described by a single “utility function”. For instance, the precision of the measurement on specific data can be thought of as a utility function.

Then, the whole process that leads to obtaining that function can be decomposed into a number of conceptual blocks: normally there are incoming particles, which move through and interact with detectors, resulting in measurements; from them, the characteristics of the particles are reconstructed; these are eventually analyzed to get relevant useful quantities, the utility function among them. Ultimately, chaining together these blocks creates a pipeline that models the experiment from one end to the other.

Now, another central notion is differentiation or, rather, the ability to be differentiated; if all the components of this model are differentiable, then the gradient of the utility function can be calculated. This leads to the holy grail: finding its extreme values, i.e. optimize the experiment’s design as a function of its numerous components.

Before we see whether the components are indeed differentiable and how the gradient gets calculated, here is an example of this pipeline concept for a muon radiography detector.

Discovering a hidden space in the Great Pyramid by using muons. ( Financial Times)

Muons are not just the trendy star of particle physics (as of April 2021), but they also find application in scanning closed volumes and revealing details about the objects in them. And yes, the Great Pyramid has been muographed successfully.

In terms of the pipeline described above, a muon radiography device could be modeled in the following way: Muons from cosmic rays are generated in the form of 4-vectors. Those are fed to a fast-simulation of the scanned volume and the detector. The interactions of the particles with the materials and the resulting signals on the electronics are simulated. This output goes into a reconstruction module, which recreates muon tracks. From them, an information-extraction module calculates the density of the scanned material. It can also produce a loss function for the measurement, which here would be the target quantity.

Conceptual layout of the optimization pipeline. (MODE collaboration)

This whole ritual is a standard process in experimental work, although the steps are usually quite separate from one another. In the MODE concept, however, not only are they linked together but also run iteratively. The optimization of the detector design proceeds in steps and in each of them the parameters of the device are changed in the simulation. This affects directly the detector module and indirectly the downstream modules of the pipeline. The loop of modification and validation can be constrained appropriately to keep everything within realistic values, and also to make the most important consideration of all enter the game – that is of course cost and the constraints that it brings along.

Descending towards the minimum. (Dezhi Yu)

As mentioned above, the proposed optimization proceeds in steps by optimizing the parameters along the gradient of the utility function. The most famous incarnation of gradient-based optimization is gradient descent which is customarily used in neural networks. Gradient descent guides the network towards the minimum value of the error that it produces, through the possible “paths” of its parameters.

In the MODE proposal the optimization is achieved through automatic differentiation (AD), the latest word in the calculation of derivatives in computer programs. To shamefully paraphrase Wikipedia, AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations and functions. By applying the chain rule repeatedly to these operations, derivatives can be computed automatically, accurately and efficiently.

Also, something was mentioned above about whether the components of the pipeline are “indeed differentiable”. It turns out that one isn’t. This is the simulation of the processes during the passage of particles through the detector, which is stochastic by nature. However, machine learning can learn how to mimic it, take its place, and provide perfectly fine and differentiable modules. (The brave of heart can follow the link at the end to find out about local generative surrogates.)

This method of designing detectors might sound like a thought experiment on steroids. But the point of MODE is that it’s the realistic way to take full advantage of the current developments in computation. And maybe to feel like we have really entered the third century of particle experiments.

Further reading:

The MODE website: https://mode-collaboration.github.io/

A Beginner’s Guide to Differentiable Programming: https://wiki.pathmind.com/differentiableprogramming

Black-Box Optimization with Local Generative Surrogates: https://arxiv.org/abs/2002.04632

A symphony of data

Article title: “MUSiC: a model unspecific search for new physics in
proton-proton collisions at \sqrt{s} = 13 TeV”

Authors: The CMS Collaboration

Reference: https://arxiv.org/abs/2010.02984

First of all, let us take care of the spoilers: no new particles or phenomena have been found… Having taken this concern away, let us focus on the important concept behind MUSiC.

ATLAS and CMS, the two largest experiments using collisions at the LHC, are known as “general purpose experiments” for a good reason. They were built to look at a wide variety of physical processes and, up to now, each has checked dozens of proposed theoretical extensions of the Standard Model, in addition to checking the Model itself. However, in almost all cases their searches rely on definite theory predictions and focus on very specific combinations of particles and their kinematic properties. In this way, the experiments may still be far from utilizing their full potential. But now an algorithm named MUSiC is here to help.

MUSiC takes all events recorded by CMS that comprise of clean-cut particles and compares them against the expectations from the Standard Model, untethering itself from narrow definitions for the search conditions.

We should clarify here that an “event” is the result of an individual proton-proton collision (among the many happening each time the proton bunches cross), consisting of a bouquet of particles. First of all, MUSiC needs to work with events with particles that are well-recognized by the experiment’s detectors, to cut down on uncertainty. It must also use particles that are well-modeled, because it will rely on the comparison of data to simulation and, so, wants to be sure about the accuracy of the latter.

Display of an event with two muons at CMS. (Source: CMS experiment)

All this boils down to working with events with combinations of specific, but several, particles: electrons, muons, photons, hadronic jets from light-flavour (=up, down, strange) quarks or gluons and from bottom quarks, and deficits in the total transverse momentum (typically the signature of the uncatchable neutrinos or perhaps of unknown exotic particles). And to make things even more clean-cut, it keeps only events that include either an electron or a muon, both being well-understood characters.

These particles’ combinations result in hundreds of different “final states” caught by the detectors. However, they all correspond to only a dozen combos of particles created in the collisions according to the Standard Model, before some of them decay to lighter ones. For them, we know and simulate pretty well what we expect the experiment to measure.

MUSiC proceeded by comparing three kinematic quantities of these final states, as measured by CMS during the year 2016, to their simulated values. The three quantities of interest are the combined mass, combined transverse momentum and combined missing transverse momentum. It’s in their distributions that new particles would most probably show up, regardless of which theoretical model they follow. The range of values covered is pretty wide. All in all, the method extends the kinematic reach of usual searches, as it also does with the collection of final states.

An example distribution from MUSiC: Transverse mass for the final state comprising of one muon and missing transverse momentum. Color histograms: Simulated Standard Model processes. Red line: Signal from a hypothetical W’ boson with mass of 3TeV. (Source: paper)

So the kinematic distributions are checked against the simulated expectations in an automatized way, with MUSiC looking for every physicist’s dream: deviations. Any deviation from the simulation, meaning either fewer or more recorded events, is quantified by getting a probability value. This probability is calculated by also taking into account the much dreaded “look elsewhere effect”. (Which comes from the fact that, statistically, in a large number of distributions a random fluctuation that will mimic a genuine deviation is bound to appear sooner or later.)

When all’s said and done the collection of probabilities is overviewed. The MUSiC protocol says that any significant deviation will be scrutinized with more traditional methods – only that this need never actually arose in the 2016 data: all the data played along with the Standard Model, in all 1,069 examined final states and their kinematic ranges.

For the record, the largest deviation was spotted in the final state comprising three electrons, two generic hadronic jets and one jet coming from a bottom quark. Seven events were counted whereas the simulation gave 2.7±1.8 events (mostly coming from the production of a top plus an anti-top quark plus an intermediate vector boson from the collision; the fractional values are due to extrapolating to the amount of collected data). This excess was not seen in other related final states, “related” in that they also either include the same particles or have one less. Everything pointed to a fluctuation and the case was closed.

However, the goal of MUSiC was not strictly to find something new, but rather to demonstrate a method for model un-specific searches with collisions data. The mission seems to be accomplished, with CMS becoming even more general-purpose.

Read more:

Another generic search method in ATLAS: Going Rogue: The Search for Anything (and Everything) with ATLAS

And a take with machine learning: Letting the Machines Seach for New Physics

Fancy checking a good old model-specific search? Uncovering a Higgs Hiding Behind Backgrounds

“Diversity and inclusion:” a meta-look at ICHEP

Event: Diversity and Inclusion sessions at ICHEP 2020

Reference: https://indico.cern.ch/event/868940/sessions/352786/

This summer’s ICHEP conference, officially held in Prague but this time actually on screens around the world, had two sessions devoted to diversity and inclusion in HEP. We’d like to mention some highlights of the talks, trying to give an indicative look but certainly not exhaustive.

from the USHEP COVID presentation

Presentations were given by the four large LHC experiments, the Belle II experiment and Valencia’s IFIC institute, five of which have dedicated “diversity offices.” Their talks presented statistics, internal poll results and accounts of activities. There was also coverage of two initiatives, THE Port humanitarian hackathons and Particle Physics Masterclasses for Girls, a contribution from the LGBTQ community at CERN, and a study on the pandemic impact for the US HEP Advisory Panel.

The main focus in terms of inclusion was gender, as the institutional presentations discussed a variety of statistics on the presence and role of women. In all of them the ratio of female members fell in the vicinity of 20% with an upward trend throughout the last decade. The statistics included details according to geographical regions and assigned responsibilities, which were in general corresponding to the overall ratio with some nuances. (One outlier that caught our eye was zero out of sixteen female speakers in the theory session of a regional meeting, which is compatible with our empirical estimation from other theory events.)

from the ATLAS presentation

A few interesting points on gender inequality emerged from polls carried out by LHCb: out of the members who have dependents in their families (35% in total), 35% of women vs. 20% of men answered that this has made them decline a position of responsibility in the collaboration. At the same time, out of the members who used maternity or paternity leave, 41% of women vs. 0% of men found that their career took a step back after it.

Family and gender along with race showed up as imbalanced factors also in a study in Brazil, presented in the US HEP pandemic study, where different groups were found to be affected to different extents by the lockdown. Indicatively, submitting papers while working remotely tended to go better the more white, male, and without kids the author was.

Alongside numbers, the institutions talked about their inclusion activities, such as discussions and seminars, training for conveners, social media and real-world events on action dates. Tongue-in-cheek, it’d probably be fair to count the ROOT logo upgrade among them.

from the LGBTQ CERN presentation

Inclusion and discrimination based on sexual identity was underscored by the presentation by LGBTQ CERN. It highlighted the CERN Informal Network’s not-all-rosy history and some public initiatives, like LGBTSTEM Day and IDAHOT. (It also included the catchy slogan “Without colors there’s no strong interaction.”)

Academia and research in large collaborations can be real ecosystems with their own issues, some of which – not traditionally present in the official discourse – seem to start emerging. These include being a newcomer, being geographically away from one’s experiment, the role of institutional affiliation, as well as social isolation and mental health. At the least, these topics now appear in the agendas of the collaborations. Student issues seem to be especially targeted: the “LHC Early Career Initiatives” provide workshops and networking, while the LHCb experiment pioneers dedicated introductory meetings and the “Starterkit” courses. Of course this is not to say that issues are exclusive to the young, as demonstrated by LHCb’s poll where the ratio of members who are dissatisfied with the work-life balance increases with seniority.

To close these highlights with some thinking outside the box, the inclusion activities of Belle II can be mentioned, which among other extend to lobbying for vegetarian food options and color blind-friendly screens in the control room.

The data might still be sparse and some bias systematic, but these discussions showed a growing trend for tackling issues in the world of HEP.

All presentations can be found at: https://indico.cern.ch/event/868940/sessions/352786/#all

A shortcut to truth

Article title: “Automated detector simulation and reconstruction
parametrization using machine learning”

Authors: D. Benjamin, S.V. Chekanov, W. Hopkins, Y. Li, J.R. Love

Reference: https://arxiv.org/abs/2002.11516 (https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05025)

Demonstration of probability density function as the output of a neural network. (Source: paper)

The simulation of particle collisions at the LHC is a pharaonic task. The messy chromodynamics of protons must be modeled; the statistics of the collision products must reflect the Standard Model; each particle has to travel through the detectors and interact with all the elements in its path. Its presence will eventually be reduced to electronic measurements, which, after all, is all we know about it.

The work of the simulation ends somewhere here, and that of the reconstruction starts; namely to go from electronic signals to particles. Reconstruction is a process common to simulation and to the real world. Starting from the tangle of statistical and detector effects that the actual measurements include, the goal is to divine the properties of the initial collision products.

Now, researchers at the Argonne National Laboratory looked into going from the simulated particles as produced in the collisions (aka “truth objects”) directly to the reconstructed ones (aka “reco objects”): bypassing the steps of the detailed interaction with the detectors and of the reconstruction algorithm could make the studies that use simulations much more speedy and efficient.

Display of a collision event involving hadronic jets at ATLAS. Each colored block corresponds to interaction with a detector element. (Source: ATLAS experiment)

The team used a neural network which it trained on simulations of the full set. The goal was to have the network learn to produce the properties of the reco objects when given only the truth objects. The process succeeded in producing the transverse momenta of hadronic jets, and looks suitable for any kind of particle and for other kinematic quantities.

More specifically, the researchers began with two million simulated jet events, fully passed through the ATLAS experiment and the reconstruction algorithm. For each of them, the network took the kinematic properties of the truth jet as input and was trained to achieve the reconstructed transverse momentum.

The network was taught to perform multi-categorization: its output didn’t consist of a single node giving the momentum value, but of 400 nodes, each corresponding to a different range of values. The output of each node was the probability for that particular range. In other words, the result was a probability density function for the reconstructed momentum of a given jet.

The final step was to select the momentum randomly from this distribution. For half a million of test jets, all this resulted in good agreement with the actual reconstructed momenta, specifically within 5% for values above 20 GeV. In addition, it seems that the training was sensitive to the effects of quantities other than the target one (e.g. the effects of the position in the detector), as the neural network was able to pick up on the dependencies between the input variables. Also, hadronic jets are complicated animals, so it is expected that the method will work on other objects just as well.

Comparison of the reconstructed transverse momentum between the full simulation and reconstruction (“Delphes”) and the neural net output. (Source: paper)

All in all, this work showed the perspective for neural networks to imitate successfully the effects of the detector and the reconstruction. Simulations in large experiments typically take up loads of time and resources due to their size, intricacy and frequent need for updates in the hardware conditions. Such a shortcut, needing only small numbers of fully processed events, would speed up studies such as optimization of the reconstruction and detector upgrades.

More reading:

Argonne Lab press release: https://www.anl.gov/article/learning-more-about-particle-collisions-with-machine-learning

Intro to neural networks: https://physicsworld.com/a/neural-networks-explained/

Crystals are dark matter’s best friends

Article title: “Development of ultra-pure NaI(Tl) detector for COSINE-200 experiment”

Authors: B.J. Park et el.

Reference: arxiv:2004.06287

The landscape of direct detection of dark matter is a perplexing one; all experiments have so far come up with deafening silence, except for a single one which promises a symphony. This is the DAMA/LIBRA experiment in Gran Sasso, Italy, which has been seeing an annual modulation in its signal for two decades now.

Such an annual modulation is as dark-matter-like as it gets. First proposed by Katherine Freese in 1987, it would be the result of earth’s motion inside the galactic halo of dark matter in the same direction as the sun for half of the year and in the opposite direction during the other half. However, DAMA/LIBRA’s results are in conflict with other experiments – but with the catch that none of those used the same setup. The way to settle this is obviously to build more experiments with the DAMA/LIBRA setup. This is an ongoing effort which ultimately focuses on the crystals at its heart.

Cylindrical crystals wrapped in reflector, bounded by photomultipliers (PMTs) and surrounded by scintillators. (COSINE-100)

The specific crystals are made of the scintillating material thallium-doped sodium iodide, NaI(Tl). Dark matter particles, and particularly WIMPs, would collide elastically with atomic nuclei and the recoil would give off photons, which would eventually be captured by photomultiplier tubes at the ends of each crystal.

Right now a number of NaI(Tl)-based experiments are at various stages of preparation around the world, with COSINE-100 at the Yangyang mountain, S.Korea, already producing negative results. However, these are still not on equal footing with DAMA/LIBRA’s because of higher backgrounds at COSINE-100. What is the collaboration to do, then? The answer is focus even more on the crystals and how they are prepared.

Setup of the COSINE-100 experiment. (COSINE-100)

Over the last couple of years some serious R&D went into growing better crystals for COSINE-200, the planned upgrade of COSINE-100. Yes, a crystal is something that can and does grow. A seed placed inside the raw material, in this case NaI(Tl) powder, leads it to organize itself around the seed’s structure over the next hours or days.

In COSINE-100 the most annoying backgrounds came from within the crystals themselves because of the production process, because of natural radioactivity, and because of cosmogenically induced isotopes. Let’s see how each of these was tackled during the experiment’s mission towards a radiopure upgrade.

Improved techniques of growing and preparing the crystals reduced contamination from the materials of the grower device and from the ambient environment. At the same time different raw materials were tried out to put the inherent contamination under control.

Among a handful of naturally present radioactive isotopes particular care was given to 40K. 40K can decay characteristically to an X-ray of 3.2keV and a γ-ray of 1,460keV, a combination convenient for tagging it to a large extent. The tagging is done with the help of 2,000 liters of liquid scintillator surrounding the crystals. However, if the γ-ray escapes the crystal then the left-behind X-ray will mimic the expected signal from WIMPs… Eventually the dangerous 40K was brought down to levels comparable to those in DAMA/LIBRA through the investigation of various techniques and first materials.

But the main source of radioactive background in COSINE-100 was isotopes such as 3H or 22Na created inside the crystals by cosmic ray muons, after their production. Now, their abundance was reduced significantly by two simple moves: the crystals were grown locally at a very low altitude and installed underground within a few weeks (instead of being transported from a lab at 1,400 meters above sea in Colorado). Moreover, most of the remaining cosmogenic background is to decay away within a couple of years.

Components of the background, and temporal evolution of the cosmogenic radioactivity. (Source)

Where are these efforts standing? The energy range of interest for testing the DAMA/LIBRA signal is 1-6keV. This corresponds to a background target of 1 count/kg/day/keV. After the crystals R&D, the achieved contamination was less than about 0.34 counts. In short, everything is ready for COSINE-100 to upgrade to COSINE-200 and test the annual modulation without the previous ambiguities that stood in the way.

Learn more:

More on DAMA/LIBRA in ParticleBites.

Cross-checking the modulation.

The COSINE-100 experiment.

First COSINE-100 results.

Listening for axions

If dark matter actually consists of a new kind of particle, then the most up-and-coming candidate is the axion. The axion is a consequence of the Peccei-Quinn mechanism, a plausible solution to the “strong CP problem,” or why the strong nuclear force conserves the CP-symmetry although there are no reasons for it to. It is a very light neutral boson, named by Frank Wilczek after a detergent brand (in a move that obviously dates its introduction in the ’70s).

Axion decay in a magnetic field: the result is a photon. (Source.)

Most experiments that try to directly detect dark matter have looked for WIMPs (weakly interacting massive particles). However, as those searches have not borne fruit, the focus started turning to axions, which make for good candidates given their properties and the fact that if they exist, then they exist in multitudes throughout the galaxies. Axions “speak” to the QCD part of the Standard Model, so they can appear in interaction vertices with hadronic loops. The end result is that axions passing through a magnetic field will convert to photons.

In practical terms, their detection boils down to having strong magnets, sensitive electronics and an electromagnetically very quiet place at one’s disposal. One can then sit back and wait for the hypothesized axions to pass through the detector as earth moves through the dark matter halo surrounding the Milky Way. Which is precisely why such experiments are known as “haloscopes.”

Now, the most veteran haloscope of all published significant new results. Alas, it is still empty-handed, but we can look at why its update is important and how it was reached.

ADMX (Axion Dark Matter eXperiment) of the University of Washington has been around for a quarter-century. By listening for signals from axions, it progressively gnaws away at the space of allowed values for their mass and coupling to photons, focusing on an area of interest:

ADMX_results_2020
Latest exclusion limits on the axion mass and coupling to photons.

Unlike higher values, this area is not excluded by astrophysical considerations (e.g. stars cooling off through axion emission) and other types of experiments (such as looking for axions from the sun). In addition, the bands above the lines denoted “KSVZ” and “DFSZ” are special. They correspond to the predictions of two models with favorable theoretical properties. So, ADMX is dedicated to scanning this parameter space. And the new analysis added one more year of data-taking, making a significant dent in this ballpark.

As mentioned, the presence of axions would be inferred from a stream of photons in the detector. The excluded mass range was scanned by “tuning” the experiment to different frequencies, while at each frequency step longer observation times probed smaller values for the axion-photon coupling.

Two things that this search needs is a lot of quiet and some good amplification, as the signal from a typical axion is expected to be as weak as the signal from a mobile phone left on the surface of Mars (around 10-23W). The setup is indeed stripped of noise by being placed in a dilution refrigerator, which keeps its temperature at a few tenths of a degree above absolute zero. This is practically the domain governed by quantum noise, so advantage can be taken of the finesse of quantum technology: for the first time ADMX used SQUIDs, superconducting quantum interference devices, for the amplification of the signal.

The heart of the experiment inside the refrigerator. The resonant frequency of the cavity is tuned to match the photons -hopefully- given off by axions. (Source.)




In the end, a good chunk of the parameter space which is favored by the theory might have been excluded, but the haloscope is ready to look at the rest of it. Just think of how, one day, a pulse inside a small device in a university lab might be a messenger of the mysteries unfolding across the cosmos.

References:

Publication by the ADMX collaboration. (arXiv)

Learn more:

  1. The theory behind axions.
  2. The hitchhiker’s guide to the dilution refrigerator.
  3. Intro to KSVZ and DFSZ axions (and more).
  4. Resonant cavities.