Probing the Standard Model with muons: new results from MEG

Article: Search for the lepton flavor violating decay μ+ → e+γ with the full dataset of the MEG experiment
Authors: MEG Collaboration
Reference: arXiv:1605.05081

I work on the Muon g-2 experiment, which is housed inside a brand new building at Fermilab.  Next door, another experiment hall is under construction. It will be the home of the Mu2e experiment, which is slated to use Fermilab’s muon beam as soon as Muon g-2 wraps up in a few years. Mu2e will search for evidence of an extremely rare process — namely, the conversion of a muon to an electron in the vicinity of a nucleus. You can read more about muon-to-electron conversion in a previous post by Flip.

Today, though, I bring you news of a different muon experiment, located at the Paul Scherrer Institute in Switzerland. The MEG experiment was operational from 2008-2013, and they recently released their final result.

Context of the MEG experiment

Figure 1: Almost 100% of the time, a muon will decay into an electron and two neutrinos.

MEG (short for “mu to e gamma”) and Mu2e are part of the same family of experiments. They each focus on a particular example of charged lepton flavor violation (CLFV). Normally, a muon decays into an electron and two neutrinos. The neutrinos ensure that lepton flavor is conserved; the overall amounts of “muon-ness” and “electron-ness” do not change.

Figure 2 lists some possible CLFV muon processes. In each case, the muon transforms into an electron without producing any neutrinos — so lepton flavor is not conserved! These processes are allowed by the standard model, but with such minuscule probabilities that we couldn’t possibly measure them. If that were the end of the story, no one would bother doing experiments like MEG and Mu2e — but of course that’s not the end of the story. It turns out that many new physics models predict CLFV at levels that are within range of the next generation of experiments. If an experiment finds evidence for one of these CLFV processes, it will be a clear indication of beyond-the-standard-model physics.

Figure 2: Some examples of muon processes that do not conserve lepton flavor. Also listed are the current/upcoming experiments that aim to measure the probabilities of these never-before-observed processes.

Results from MEG

The goal of the MEG experiment was to do one of two things:

  1. Measure the branching ratio of the μ+ → e+γ decay, or
  2. Establish a new upper limit

Outcome #1 is only possible if the branching ratio is high enough to produce a clear signal. Otherwise, all the experimenters can do is say “the branching ratio must be smaller than such-and-such, because otherwise we would have seen a signal” (i.e., outcome #2).

MEG saw no evidence of μ+ → e+γ decays. Instead, they determined that the branching ratio is less than 4.2 × 10^-13 (90% confidence level). Roughly speaking, that means if you had a pair of magic goggles that let you peer directly into the subatomic world, you could stand around and watch 2 × 10^12 muons decay without seeing anything unusual. Because real experiments are messier and less direct than magic goggles, the MEG result is actually based on data from 7.5 × 10^14 muons.

Before MEG, the previous experiment to search for μ+ → e+γ was the MEGA experiment at Los Alamos; they collected data from 1993-1995, and published their final result in 1999. They found an upper limit for the branching ratio of 1.2 × 10^-11. Thus, MEG achieved a factor of 30 improvement in sensitivity over the previous result.

How the experiment works

Figure 3: The MEG signal consists of a back-to-back positron and gamma, each carrying half the rest energy of the parent muon.

A continuous beam of positive muons enters a large magnet and hits a thin plastic target. By interacting with the material, about 80% of the muons lose their kinetic energy and come to rest inside the target. Because the muons decay from rest, the MEG signal is simple. Energy and momentum must be conserved, so the positron and gamma emerge from the target in opposite directions, each with an energy of 52.83 MeV (half the rest energy of the muon).1  The experiment is specifically designed to catch and measure these events. It consists of three detectors: a drift chamber to measure the positron trajectory and momentum, a timing counter to measure the positron time, and a liquid xenon detector to measure the photon time, position, and energy. Data from all three detectors must be combined to get a complete picture of each muon decay, and determine whether it fits the profile of a MEG signal event.

Figure 4: Layout of the MEG experiment. Source: arXiv:1605.05081.

In principle, it sounds pretty simple….to search for MEG events, you look at each chunk of data and go through a checklist:

  • Is there a photon with the correct energy?
  • Is there a positron at the same time?
  • Did the photon and positron emerge from the target in opposite directions?
  • Does the positron have the correct energy?

Four yeses and you might be looking at a rare CLFV muon decay! However, the key word here is might. Unfortunately, it is possible for a normal muon decay to masquerade as a CLFV decay. For MEG, one source of background is “radiative muon decay,” in which a muon decays into a positron, two neutrinos and a photon; if the neutrinos happen to have very low energy, this will look exactly like a MEG event. In order to get a meaningful result, MEG scientists first had to account for all possible sources of background and figure out the expected number of background events for their data sample. In general, experimental particle physicists spend a great deal of time reducing and understanding backgrounds!

What’s next for MEG?

The MEG collaboration is planning an upgrade to their detector which will produce an order of magnitude improvement in sensitivity. MEG-II is expected to begin three years of data-taking late in 2017. Perhaps at the new level of sensitivity, a μ+ → e+γ signal will emerge from the background!

 

1 Because photons are massless and positrons are not, their energies are not quite identical, but it turns out that they both round to 52.83 MeV. You can work it out yourself if you’re skeptical (that’s what I did).

Further Reading

  • Robert H. Bernstein and Peter S. Cooper, “Charged Lepton Flavor Violation: An Experimenter’s Guide.” (arXiv:1307.5787)
  • S. Mihara, J.P. Miller, P. Paradisi and G. Piredda, “Charged Lepton Flavor–Violation Experiments.” (DOI: 10.1146/annurev-nucl-102912-144530)
  • André de Gouvêa and Petr Vogel, “Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model.” (arXiv:1303.4097)
The following two tabs change content below.

Robin Bjorkquist

Robin Bjorkquist is a graduate student in physics at Cornell University, working on the Muon g-2 experiment. She graduated from Reed College with a BA in physics in 2009. Before coming to Cornell, she spent two years working as the Associate Director of the Reed Research Reactor (the only nuclear reactor in the world run primarily by undergraduate students!).

Latest posts by Robin Bjorkquist (see all)

Leave a Reply

Your email address will not be published. Required fields are marked *